【MATLAB第58期】基于MATLAB的PCA-Kmeans、PCA-LVQ与BP神经网络分类预测模型对比

【MATLAB第58期】基于MATLAB的PCA-Kmeans、PCA-LVQ与BP神经网络分类预测模型对比

一、数据介绍

基于UCI葡萄酒数据集进行葡萄酒分类及产地预测

共包含178组样本数据,来源于三个葡萄酒产地,每组数据包含产地标签及13种化学元素含量,即已知类别标签。

把样本集随机分为训练集和测试集(70%训练,30%测试),根据已有数据集训练一个能进行葡萄酒产地预测的模型,以正确区分三个产地所产出的葡萄酒,

分别采用PCA+Kmeans、PCA+LVQ、BP神经网络等方法进行模型的训练与测试,准确率都能达到95%左右。

二、效果展示

1.PCA-Kmeans




train_accuracy = 0.95

test_accuracy = 0.98

2.PCA-LVQ




3.BP


三、代码展示(部分代码)

bash 复制代码
clear all;
wine_data = xlsread('wine.xlsx');  %分类标签默认第一列

method = 'BP';%PK: PCA & Kmeans 
%PL:        PCA & LVQ  
%BP:         BP Neural Network'
rate = 0.7;%训练集70%,测试集30%
N = size(unique(wine_data(:,1)),1);;

total_cnt = size(wine_data,1);
train_cnt = round(total_cnt*rate);
test_cnt = total_cnt - train_cnt;

rand_idx = randperm(total_cnt);
train_idx = rand_idx(1:train_cnt);
test_idx = rand_idx(train_cnt+1:total_cnt);

train_data = wine_data(train_idx,2:size(wine_data,2));
train_class = wine_data(train_idx,1);
test_data = wine_data(test_idx,2:size(wine_data,2));
test_class = wine_data(test_idx,1);
dim = size(wine_data,2)-1;

%矩阵z-score标准化
train_SM = zeros(train_cnt,dim);
data_mean = mean(train_data);
data_std = std(train_data);
test_SM = zeros(test_cnt,dim);
for j = 1:dim
    train_SM(:,j) = (train_data(:,j) - data_mean(j)) / data_std(j);
    test_SM(:,j) = (test_data(:,j) - data_mean(j)) / data_std(j);
end

四、代码获取

私信回复"58期"即可获取下载链接。

相关推荐
孤亭远见2 小时前
COMSOL with Matlab
matlab
图南楠4 小时前
simulink离散传递函数得到差分方程并用C语言实现
matlab
落魄君子4 小时前
ELM分类-单隐藏层前馈神经网络(Single Hidden Layer Feedforward Neural Network, SLFN)
神经网络·分类·数据挖掘
信号处理学渣4 小时前
matlab画图,选择性显示legend标签
开发语言·matlab
是Dream呀6 小时前
Python从0到100(七十八):神经网络--从0开始搭建全连接网络和CNN网络
网络·python·神经网络
机器学习之心15 小时前
Bayes-GRU-Attention的数据多特征分类预测Matlab实现
matlab·分类·gru
叶庭云16 小时前
Matlab 和 R 语言的数组索引都是从 1 开始,并且是左闭右闭的
matlab·编程语言·r·数组索引·从 1 开始
γ..18 小时前
基于MATLAB的图像增强
开发语言·深度学习·神经网络·学习·机器学习·matlab·音视频
机器学习之心19 小时前
LSTM-SVM时序预测 | Matlab基于LSTM-SVM基于长短期记忆神经网络-支持向量机时间序列预测
神经网络·支持向量机·lstm
落魄君子19 小时前
SVM分类-支持向量机(Support Vector Machine)
神经网络·算法·支持向量机·分类