深度学习中标量,向量,矩阵和张量

1.标量(Scalar)

只有大小没有方向,可用实数表示的一个量

2.向量(Vector)

可以表示大小和方向的量

3.矩阵(Matrix)

m行n列,矩阵中的元素可以是数字也可以是符号,在深度学习中一般是二维数组

4.张量(Tensor)

用来表示一些向量、标量和其他张量之间的线性关系的多线性函数,这些线性关系可以是内积、外积、线性映射、或者笛卡尔积。张量通常是大于2维的数字表。

5.Representation
相关推荐
德迅云安全—珍珍16 小时前
2026 年网络安全预测:AI 全面融入实战的 100+行业洞察
人工智能·安全·web安全
数新网络18 小时前
CyberScheduler —— 打破数据调度边界的核心引擎
人工智能
Codebee19 小时前
Ooder框架8步编码流程实战 - DSM组件UI统计模块深度解析
人工智能
Deepoch19 小时前
智能升级新范式:Deepoc开发板如何重塑康复辅具产业生态
人工智能·具身模型·deepoc·智能轮椅
赋创小助手19 小时前
融合与跃迁:NVIDIA、Groq 与下一代 AI 推理架构的博弈与机遇
服务器·人工智能·深度学习·神经网络·语言模型·自然语言处理·架构
静听松涛13319 小时前
多智能体协作中的通信协议演化
人工智能
基咯咯19 小时前
Google Health AI发布MedASR:Conformer 医疗语音识别如何服务临床口述与对话转写
人工智能
白日做梦Q19 小时前
深度学习模型评估指标深度解析:不止于准确率的科研量化方法
人工智能·深度学习
Yyyyy123jsjs20 小时前
外汇Tick数据交易时段详解与Python实战分析
人工智能·python·区块链
张彦峰ZYF20 小时前
提示词工程实战指南:从概念认知到可验证的高质量 Prompt 设计
人工智能·提示词工程实战指南·高质量 prompt 设计