剑指offer41.数据流中的中位数

我一开始的想法是既然要找中位数,那肯定要排序,而且这个数据结构肯定要能动态的添加数据的,肯定不能用数组,于是我想到了用优先队列,它自己会排序都不用我写,所以addNum方法直接调用就可以,但是找中位数就很麻烦,它不能根据下标访问,于是我写了一个很屎的方法,把它poll到数组里面找到中位数后,再从数组放到优先队列中,代码如下:

java 复制代码
class MedianFinder {
    private PriorityQueue<Integer> priorityQueue;
    /** initialize your data structure here. */
    public MedianFinder() {
       this.priorityQueue = new PriorityQueue<Integer>();
    }
    
    public void addNum(int num) {
        priorityQueue.add(num);
    }
    
    public double findMedian() {
       int size = priorityQueue.size();
       int[] arr = new int[size];
       for(int i=0;i<size;i++){
           arr[i] = priorityQueue.poll();
       }
       for(int i=0;i<size;i++){
           priorityQueue.add(arr[i]);
       }
       if(size%2 != 0){
           return (double)arr[((size+1)/2) -1];
       }else{
           double res = (arr[(size/2)-1] + arr[size/2])/2.0;
           return res;
       }
    }
}

但是它超时了,题目的测试用例非常大,我就想肯定是找中位数的时候太繁琐了,于是就想到了用LinkedList,可以通过下标获取中位数,只需要自己写一个排序,我就想到用add(int index, E element)方法,每次添加的时候找到添加的位置,这样就一直是有序的,复杂度是O(n),于是我又写了如下代码:

java 复制代码
class MedianFinder {
    private LinkedList<Integer> list;
    /** initialize your data structure here. */
    public MedianFinder() {
       this.list = new LinkedList<Integer>();
    }
    
    public void addNum(int num) {
        int size = list.size();
        if(size == 0){
            list.add(num);
            return;
        }else{
            for(int i =0;i<size;i++){
                if(i==0 && num <= list.get(0)){
                    list.addFirst(num);
                    break;
                }else if(i==size-1 && num >= list.get(size-1)){
                        list.addLast(num);
                        break;
                }else if(num >= list.get(i) && num <= list.get(i+1)){
                    list.add(i+1, num);
                    break;
                }else{
                    continue;
                }
            }
        }
    }
    
    public double findMedian() {
         int size = list.size();
         return size%2 !=0 ? list.get(((size+1)/2)-1)*1.0 : (list.get((size/2)-1)+list.get(size/2))/2.0;
    }
}

但是tmd我没想到这也能超时,真进行了5000次的调用,然后我又试了一下用二分查找添加,不行,看题解了。题解看完我只想说一个字,妙!他也是用的优先队列,但是他用了两个优先队列,一个queMax存大于中位数的数,queMin存小于等于中位数的数,如果总数的奇数,那么中位数就是queMin的队头,如果总数是偶数那么中位数就是queMin和queMax的队头的平均值,添加的时候如果num小于等于中位数就加到queMin中,这时候新的中位数可能会小于原来的中位数,就要把queMin的对头放到queMax中,如果num大于中位数同理。

java 复制代码
class MedianFinder {
    private PriorityQueue<Integer> queMin;
    private PriorityQueue<Integer> queMax;
    /** initialize your data structure here. */
    public MedianFinder() {
       queMin = new PriorityQueue<Integer>((a, b) -> (b - a));
       queMax = new PriorityQueue<Integer>((a, b) -> (a - b));
    }
    
    public void addNum(int num) {
        if(queMin.isEmpty() || num <= queMin.peek()){
            queMin.offer(num);
            if(queMax.size() + 1 < queMin.size()){
                queMax.offer(queMin.poll());
            }
        }else{
            queMax.offer(num);
            if(queMax.size() > queMin.size()){
                queMin.offer(queMax.poll());
            }
        }
    }
   
    public double findMedian() {
         if(queMin.size() > queMax.size()){
             return queMin.peek();
         }
         return (queMax.peek() + queMin.peek()) / 2.0;
    }
}

需要注意的是两个队列的排序方法不一样,queMin是队头最大,从大到小排,queMax是队头最小,从小到大排。所以看到两个优先队列的初始化方法是不一样的,lambda表达式中queMin的返回结果是b-a,而queMax是a-b。

相关推荐
学Linux的语莫21 分钟前
机器学习数据处理
java·算法·机器学习
找不到、了21 分钟前
JVM的即时编译JIT的介绍
java·jvm
earthzhang20211 小时前
【1007】计算(a+b)×c的值
c语言·开发语言·数据结构·算法·青少年编程
西瓜er1 小时前
JAVA:Spring Boot 集成 FFmpeg 实现多媒体处理
java·spring boot·ffmpeg
你总是一副不开心的样子(´ . .̫ .1 小时前
一、十天速通Java面试(第三天)
java·面试·职场和发展·java面试
迎風吹頭髮1 小时前
UNIX下C语言编程与实践63-UNIX 并发 Socket 编程:非阻塞套接字与轮询模型
java·c语言·unix
我是华为OD~HR~栗栗呀1 小时前
23届考研-Java面经(华为OD)
java·c++·python·华为od·华为·面试
Javatutouhouduan1 小时前
Java程序员如何深入学习JVM底层原理?
java·jvm·java面试·后端开发·java架构师·java程序员·互联网大厂
王嘉俊9252 小时前
设计模式--享元模式:优化内存使用的轻量级设计
java·设计模式·享元模式
2301_803554522 小时前
C++联合体(Union)详解:与结构体的区别、联系与深度解析
java·c++·算法