在langchain中使用带简短知识内容的prompt template

简介

langchain中有个比较有意思的prompt template叫做FewShotPromptTemplate。

他是这句话的简写:"Prompt template that contains few shot examples."

什么意思呢?就是说在Prompt template带了几个比较简单的例子。然后把这些例子发送给LLM,作为简单的上下文环境,从而为LLM提供额外的一些关键信息。

这种few shot examples非常有用,如果你希望LLM可以基于你提供的prompt中的内容进行回答的时候,就需要用到这个东西了。

你可以把Few-shot prompt templates看做是简单的知识库,后面我们会具体讲解如何搭建自己的知识库。

现在先提前了解一下它的魅力吧。

带few shot examples的例子

加入现在我要问chatgpt这样一个问题:

请问工具人的代表作是什么?

因为这里的工具人是我虚拟出来的一个人,真实并不存在,所以chatgpt的回答可能是下面这样的:

工具人的代表作是迈克尔·佩拉的《开膛手杰克》。

因为chatgpt对不会的东西可能会乱回答,所以上面的答案是在合理范围之内的。

那么怎么才能让chatgpt按照我们虚构的内容进行回答呢?

答案就是在prompt中提供有用的信息,比如下面这样子:

问题: 请帮忙描述下古龙?
回答: 姓名:古龙,出生日期:1937年,代表作:《楚留香传奇系列》、《陆小凤系列》、《萧十一郎系列》

问题: 请帮忙描述下金庸?
回答: 姓名:金庸,出生日期:1924年,代表作:《射雕英雄传》、《神雕侠侣》、《天龙八部》

问题: 请帮忙描述下工具人?
回答: 姓名:工具人,出生日期:1988年,代表作:《工具人传奇》、《工具人上班》、《工具人睡觉》

问题: 请问工具人的代表作是什么?

下面是chatgpt的回答:

工具人的代表作是《工具人传奇》、《工具人上班》和《工具人睡觉》。

所以大家想到了什么?

没错,就是可以使用prompt中的信息做知识库,让chatgpt从这个给定的知识库中查询出有用的东西,然后再用自己的语言组织起来,返回给用户。

在langchain中使用FewShotPromptTemplate

实际上,上面的问题和答案都是promot内容的一部分,所以可以保存在PromptTemplate中。

而langchain有与之对应的专门的一个类叫做FewShotPromptTemplate。

上面的问答,其实可以保存在一个json数组中,然后再在FewShotPromptTemplate中使用:

from langchain.prompts.few_shot import FewShotPromptTemplate
from langchain.prompts.prompt import PromptTemplate

examples = [
  {
    "question": "请帮忙描述下古龙?",
    "answer": 
"""
姓名:古龙,出生日期:1937年,代表作:《楚留香传奇系列》、《陆小凤系列》、《萧十一郎系列》
"""
  },
  {
    "question": "请帮忙描述下金庸?",
    "answer": 
"""
姓名:金庸,出生日期:1924年,代表作:《射雕英雄传》、《神雕侠侣》、《天龙八部》
"""
  },
  {
    "question": "请帮忙描述下工具人?",
    "answer":
"""
姓名:工具人,出生日期:1988年,代表作:《工具人传奇》、《工具人上班》、《工具人睡觉》
"""
  }
]

首先我们来看一下FewShotPromptTemplate中都有哪些属性:

   examples: Optional[List[dict]] = None
    """Examples to format into the prompt.
    Either this or example_selector should be provided."""

    example_selector: Optional[BaseExampleSelector] = None
    """ExampleSelector to choose the examples to format into the prompt.
    Either this or examples should be provided."""

    example_prompt: PromptTemplate
    """PromptTemplate used to format an individual example."""

    suffix: str
    """A prompt template string to put after the examples."""

    input_variables: List[str]
    """A list of the names of the variables the prompt template expects."""

    example_separator: str = "\n\n"
    """String separator used to join the prefix, the examples, and suffix."""

    prefix: str = ""
    """A prompt template string to put before the examples."""

    template_format: str = "f-string"
    """The format of the prompt template. Options are: 'f-string', 'jinja2'."""

    validate_template: bool = True
    """Whether or not to try validating the template."""

其中examples和example_selector是可选的,其他的都是必须的。

example_prompt是用来格式化一个特定example的PromptTemplate。

如下所示:

example_prompt = PromptTemplate(input_variables=["question", "answer"], template="问题: {question}\n 回答:{answer}")

print(example_prompt.format(**examples[0]))

问题: 请帮忙描述下古龙?
回答: 姓名:古龙,出生日期:1937年,代表作:《楚留香传奇系列》、《陆小凤系列》、《萧十一郎系列》

上面代码中,我们使用PromptTemplate对队列中的数据进行了格式化。

有了examples和example_prompt,我们就可以构建FewShotPromptTemplate了:

prompt = FewShotPromptTemplate(
    examples=examples, 
    example_prompt=example_prompt, 
    suffix="问题: {input}", 
    input_variables=["input"]
)

print(prompt.format(input="请问工具人的代表作是什么?"))

这里输出的内容和我们最开始的内容是一样的。

使用ExampleSelector

在上面的例子中,我们实际上是把所有的shot examples都提交给了大语言模型,但实际上并不是必须的。因为有些examples跟问题是没有关联关系的。

所以langchain给我们提供了一个类叫做ExampleSelector,可以通过这个selector来选择跟我们问题相关的一些examples,从而减少不必要的内容传输。

这里我们使用SemanticSimilarityExampleSelector,它的作用是根据语义的相似度来选择examples:

from langchain.prompts.example_selector import SemanticSimilarityExampleSelector
from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings


example_selector = SemanticSimilarityExampleSelector.from_examples(
    # 要选择的examples
    examples,
    # embedding用来判断文本的相似度
    OpenAIEmbeddings(),
    # 向量数据库,用来存储embeddings
    Chroma,
    # 最终要选择的长度
    k=1
)

# 选择最为相似的作为输入
question = "请问工具人的代表作是什么?"
selected_examples = example_selector.select_examples({"question": question})
print(f"下面是和这个问题最相似的examples: {question}")
for example in selected_examples:
    print("\n")
    for k, v in example.items():
        print(f"{k}: {v}")

最后,我们同样的把ExampleSelector和FewShotPromptTemplate结合起来一起使用:

prompt = FewShotPromptTemplate(
    example_selector=example_selector, 
    example_prompt=example_prompt, 
    suffix="问题: {input}", 
    input_variables=["input"]
)

print(prompt.format(input="请问工具人的代表作是什么?"))

总结

如果你有一些简单的内容需要提供给大语言模型,那么可以使用这个方式。但是如果你有很多内容的话,比如知识库。这种实现就处理不了了。那么如何构建一个知识库应用呢?我们后续分享。

相关推荐
知来者逆1 分钟前
基于集成Whisper 与 Pepper-GPT改进人机交互体验并实现顺畅通信
人工智能·gpt·语言模型·自然语言处理·whisper·人机交互
摆烂仙君4 分钟前
《Probing the 3D Awareness of Visual Foundation Models》论文解析——单图像表面重建
人工智能·深度学习·计算机视觉
摆烂仙君5 分钟前
《Probing the 3D Awareness of Visual Foundation Models》论文解析——多视图一致性
人工智能·深度学习
Elastic 中国社区官方博客43 分钟前
Elasticsearch retrievers 通常与 Elasticsearch 8.16.0 一起正式发布!
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
LKID体1 小时前
ChatGPT提问prompt范例模板
人工智能·chatgpt·prompt
CSBLOG1 小时前
AI大模型(一):Prompt & AI编程
prompt
MinIO官方账号1 小时前
使用 Prompt API 与您的对象聊天
人工智能
爱喝矿泉水的猛男1 小时前
Prompt设计技巧和高级PE
java·人工智能·prompt·cot·tot·pe·ape
EasyCVR3 小时前
ISUP协议视频平台EasyCVR私有化部署视频平台如何实现RTMP推流将大疆无人机的视频画面回传?
服务器·网络·数据库·人工智能·音视频·无人机