深入浅出Pytorch函数——torch.sum

分类目录:《深入浅出Pytorch函数》总目录

相关文章:

· 深入浅出Pytorch函数------torch.Tensor


函数torch.sum有两种形式:

  • torch.sum(input, *, dtype=None):返回输入张量input所有元素的和。
  • torch.sum(input, dim, keepdim=False, *, dtype=None):返回给定维度dim中输入张量的每一行的总和。如果dim是一个维度列表,则对所有维度进行缩小。如果keepdimTrue,则输出张量的大小与输入的大小相同,但维度dim的大小为1。否则,dim会被挤压(参考torch.squeeze())。

语法

dart 复制代码
torch.sum(input, *, dtype=None) -> Tensor
torch.sum(input, dim, keepdim=False, *, dtype=None) -> Tensor

参数

  • input:输入张量
  • dim:[可选, int/tuple] 要减少的一个或多个维度。如果为None,则所有维度都将被裁剪。
  • keepdim:[bool] 输出张量是否保留了dim
  • dtype:[可选, torch.dtype] 返回张量的所需数据类型。如果指定,则在执行操作之前将输入张量强制转换为dtype。这对于防止数据类型溢出非常有用,默认值为None

实例

dart 复制代码
>>> a = torch.randn(1, 3)
>>> a
tensor([[ 0.1133, -0.9567,  0.2958]])
>>> torch.sum(a)
tensor(-0.5475)
>>> a = torch.randn(4, 4)
>>> a
tensor([[ 0.0569, -0.2475,  0.0737, -0.3429],
        [-0.2993,  0.9138,  0.9337, -1.6864],
        [ 0.1132,  0.7892, -0.1003,  0.5688],
        [ 0.3637, -0.9906, -0.4752, -1.5197]])
>>> torch.sum(a, 1)
tensor([-0.4598, -0.1381,  1.3708, -2.6217])
>>> b = torch.arange(4 * 5 * 6).view(4, 5, 6)
>>> torch.sum(b, (2, 1))
tensor([  435.,  1335.,  2235.,  3135.])
相关推荐
易知微EasyV数据可视化6 分钟前
数字孪生+AI:头部能源企业-监测光伏产品生命周期,驱动绿色智造零碳未来
人工智能·经验分享·能源·数字孪生
Rorsion6 分钟前
机器学习概述(概念+分类)
人工智能·机器学习
黎阳之光7 分钟前
黎阳之光:以科技之力赋能城市更新,共筑高品质示范之城
大数据·人工智能·科技
AI营销前沿8 分钟前
原圈科技AI市场分析榜单:2026年如何打破数据孤岛,实现营销增长300%?
大数据·人工智能
(; ̄ェ ̄)。9 分钟前
机器学习入门(十六)集成学习,GBDT,XGBoost
人工智能·机器学习·集成学习
weixin_5498083614 分钟前
2026中国AI招聘系统选型指南:从“效率工具”到“智能体协同”的跃迁
人工智能
zlt200018 分钟前
从Prompt工程到Skill工程:Agent Skills开放标准彻底改变了AI协作方式
人工智能·ai·agent skill
咚咚王者21 分钟前
人工智能之核心技术 深度学习 第九章 框架实操(PyTorch / TensorFlow)
人工智能·pytorch·深度学习
天空属于哈夫克323 分钟前
外部群自动化:将 RPA 从“群发工具”进化为私域“情报感知系统”
人工智能·自然语言处理
AI人工智能+24 分钟前
联机手写签名识别技术通过采集书写时的压力、速度、轨迹等动态特征,构建独特的“行为指纹“
深度学习·联机手写签名识别·手写签名识别