深入浅出Pytorch函数——torch.sum

分类目录:《深入浅出Pytorch函数》总目录

相关文章:

· 深入浅出Pytorch函数------torch.Tensor


函数torch.sum有两种形式:

  • torch.sum(input, *, dtype=None):返回输入张量input所有元素的和。
  • torch.sum(input, dim, keepdim=False, *, dtype=None):返回给定维度dim中输入张量的每一行的总和。如果dim是一个维度列表,则对所有维度进行缩小。如果keepdimTrue,则输出张量的大小与输入的大小相同,但维度dim的大小为1。否则,dim会被挤压(参考torch.squeeze())。

语法

dart 复制代码
torch.sum(input, *, dtype=None) -> Tensor
torch.sum(input, dim, keepdim=False, *, dtype=None) -> Tensor

参数

  • input:输入张量
  • dim:[可选, int/tuple] 要减少的一个或多个维度。如果为None,则所有维度都将被裁剪。
  • keepdim:[bool] 输出张量是否保留了dim
  • dtype:[可选, torch.dtype] 返回张量的所需数据类型。如果指定,则在执行操作之前将输入张量强制转换为dtype。这对于防止数据类型溢出非常有用,默认值为None

实例

dart 复制代码
>>> a = torch.randn(1, 3)
>>> a
tensor([[ 0.1133, -0.9567,  0.2958]])
>>> torch.sum(a)
tensor(-0.5475)
>>> a = torch.randn(4, 4)
>>> a
tensor([[ 0.0569, -0.2475,  0.0737, -0.3429],
        [-0.2993,  0.9138,  0.9337, -1.6864],
        [ 0.1132,  0.7892, -0.1003,  0.5688],
        [ 0.3637, -0.9906, -0.4752, -1.5197]])
>>> torch.sum(a, 1)
tensor([-0.4598, -0.1381,  1.3708, -2.6217])
>>> b = torch.arange(4 * 5 * 6).view(4, 5, 6)
>>> torch.sum(b, (2, 1))
tensor([  435.,  1335.,  2235.,  3135.])
相关推荐
摘星星的屋顶1 天前
2026年1月19日~2026年1月25日周报
人工智能·深度学习·学习
GAOJ_K1 天前
交叉导轨如何避免无效安装
运维·人工智能·科技·自动化·制造
腾视科技1 天前
AI NAS:当存储遇上智能,开启数据管理新纪元
大数据·人工智能·ai·nas·ai nas·ainas
海绵宝宝de派小星1 天前
手写实现一个简单神经网络
人工智能·深度学习·神经网络·ai
沐欣工作室_lvyiyi1 天前
基于窗函数法的FIR滤波器设计(论文+源码)
人工智能·matlab·毕业设计·语音识别·fir滤波器
啊阿狸不会拉杆1 天前
《计算机操作系统》第六章-输入输出系统
java·开发语言·c++·人工智能·嵌入式硬件·os·计算机操作系统
线束线缆组件品替网1 天前
Stewart Connector RJ45 以太网线缆高速接口设计解析
服务器·网络·人工智能·音视频·硬件工程·材料工程
果粒蹬i1 天前
你的第一个神经网络:用PyTorch/Keras实现手写数字识别
pytorch·神经网络·keras
AI即插即用1 天前
即插即用系列 | AAAI 2025 Mesorch:CNN与Transformer的双剑合璧:基于频域增强与自适应剪枝的篡改定位
人工智能·深度学习·神经网络·计算机视觉·cnn·transformer·剪枝
应用市场1 天前
视频目标追踪完全指南:从原理到实战部署
人工智能·深度学习