深入浅出Pytorch函数——torch.sum

分类目录:《深入浅出Pytorch函数》总目录

相关文章:

· 深入浅出Pytorch函数------torch.Tensor


函数torch.sum有两种形式:

  • torch.sum(input, *, dtype=None):返回输入张量input所有元素的和。
  • torch.sum(input, dim, keepdim=False, *, dtype=None):返回给定维度dim中输入张量的每一行的总和。如果dim是一个维度列表,则对所有维度进行缩小。如果keepdimTrue,则输出张量的大小与输入的大小相同,但维度dim的大小为1。否则,dim会被挤压(参考torch.squeeze())。

语法

dart 复制代码
torch.sum(input, *, dtype=None) -> Tensor
torch.sum(input, dim, keepdim=False, *, dtype=None) -> Tensor

参数

  • input:输入张量
  • dim:[可选, int/tuple] 要减少的一个或多个维度。如果为None,则所有维度都将被裁剪。
  • keepdim:[bool] 输出张量是否保留了dim
  • dtype:[可选, torch.dtype] 返回张量的所需数据类型。如果指定,则在执行操作之前将输入张量强制转换为dtype。这对于防止数据类型溢出非常有用,默认值为None

实例

dart 复制代码
>>> a = torch.randn(1, 3)
>>> a
tensor([[ 0.1133, -0.9567,  0.2958]])
>>> torch.sum(a)
tensor(-0.5475)
>>> a = torch.randn(4, 4)
>>> a
tensor([[ 0.0569, -0.2475,  0.0737, -0.3429],
        [-0.2993,  0.9138,  0.9337, -1.6864],
        [ 0.1132,  0.7892, -0.1003,  0.5688],
        [ 0.3637, -0.9906, -0.4752, -1.5197]])
>>> torch.sum(a, 1)
tensor([-0.4598, -0.1381,  1.3708, -2.6217])
>>> b = torch.arange(4 * 5 * 6).view(4, 5, 6)
>>> torch.sum(b, (2, 1))
tensor([  435.,  1335.,  2235.,  3135.])
相关推荐
bst@微胖子5 分钟前
WGAI项目图像视频语音识别功能
人工智能·语音识别·xcode
胖达不服输11 分钟前
「日拱一码」081 机器学习——梯度增强特征选择GBFS
人工智能·python·算法·机器学习·梯度增强特征选择·gbfs
大千AI助手13 分钟前
VeRL:强化学习与大模型训练的高效融合框架
人工智能·深度学习·神经网络·llm·强化学习·verl·字节跳动seed
灵犀物润18 分钟前
2025年AI PPT必修课-汇报中AI相关内容的“陷阱”与“亮点”
人工智能·powerpoint
TMT星球20 分钟前
发布工业智能体,云从科技打造制造业AI“运营大脑”
大数据·人工智能·科技
星空的资源小屋22 分钟前
PPTist,一个完全免费的 AI 生成 PPT 在线网站
人工智能·python·电脑·excel
全年无休的IT老兵24 分钟前
使用AI工具一句话生成PPT
人工智能·powerpoint
初级炼丹师(爱说实话版)34 分钟前
2025算法八股——深度学习——优化器小结
人工智能·深度学习·算法
开开心心_Every40 分钟前
免费语音合成工具:66种音色随心选
人工智能·面试·java-ee·计算机外设·电脑·maven·excel
Pocker_Spades_A41 分钟前
论文精读(五):面向链接预测的知识图谱表示学习方法综述
人工智能·链表·知识图谱