深入浅出Pytorch函数——torch.sum

分类目录:《深入浅出Pytorch函数》总目录

相关文章:

· 深入浅出Pytorch函数------torch.Tensor


函数torch.sum有两种形式:

  • torch.sum(input, *, dtype=None):返回输入张量input所有元素的和。
  • torch.sum(input, dim, keepdim=False, *, dtype=None):返回给定维度dim中输入张量的每一行的总和。如果dim是一个维度列表,则对所有维度进行缩小。如果keepdimTrue,则输出张量的大小与输入的大小相同,但维度dim的大小为1。否则,dim会被挤压(参考torch.squeeze())。

语法

dart 复制代码
torch.sum(input, *, dtype=None) -> Tensor
torch.sum(input, dim, keepdim=False, *, dtype=None) -> Tensor

参数

  • input:输入张量
  • dim:[可选, int/tuple] 要减少的一个或多个维度。如果为None,则所有维度都将被裁剪。
  • keepdim:[bool] 输出张量是否保留了dim
  • dtype:[可选, torch.dtype] 返回张量的所需数据类型。如果指定,则在执行操作之前将输入张量强制转换为dtype。这对于防止数据类型溢出非常有用,默认值为None

实例

dart 复制代码
>>> a = torch.randn(1, 3)
>>> a
tensor([[ 0.1133, -0.9567,  0.2958]])
>>> torch.sum(a)
tensor(-0.5475)
>>> a = torch.randn(4, 4)
>>> a
tensor([[ 0.0569, -0.2475,  0.0737, -0.3429],
        [-0.2993,  0.9138,  0.9337, -1.6864],
        [ 0.1132,  0.7892, -0.1003,  0.5688],
        [ 0.3637, -0.9906, -0.4752, -1.5197]])
>>> torch.sum(a, 1)
tensor([-0.4598, -0.1381,  1.3708, -2.6217])
>>> b = torch.arange(4 * 5 * 6).view(4, 5, 6)
>>> torch.sum(b, (2, 1))
tensor([  435.,  1335.,  2235.,  3135.])
相关推荐
海边夕阳20061 小时前
【每天一个AI小知识】:什么是生成对抗网络?
人工智能·经验分享·深度学习·神经网络·机器学习·生成对抗网络
Wise玩转AI2 小时前
Day 27|智能体的 UI 与用户交互层
人工智能·python·ui·ai·chatgpt·ai智能体
youcans_2 小时前
【youcans论文精读】VM-UNet:面向医学图像分割的视觉 Mamba UNet 架构
论文阅读·人工智能·计算机视觉·图像分割·状态空间模型
铮铭2 小时前
扩散模型简介:The Annotated Diffusion Model
人工智能·机器人·强化学习·世界模型
轻竹办公PPT2 小时前
轻竹论文:毕业论文AI写作教程
人工智能·ai·ai写作
呵呵哒( ̄▽ ̄)"2 小时前
专项智能练习(课程类型)
人工智能
2501_918126913 小时前
如何用ai把特定领域的生活成本归零
人工智能·生活·个人开发
Brianna Home3 小时前
[鸿蒙2025领航者闯关] 鸿蒙 6.0 星盾安全架构 + AI 防窥:金融级支付安全实战与深度踩坑实录
人工智能·安全·harmonyos·安全架构
飞哥数智坊4 小时前
V4/R4 没来,但 DeepSeek-V3.2 好像又便宜又好用?
人工智能·deepseek