深入浅出Pytorch函数——torch.sum

分类目录:《深入浅出Pytorch函数》总目录

相关文章:

· 深入浅出Pytorch函数------torch.Tensor


函数torch.sum有两种形式:

  • torch.sum(input, *, dtype=None):返回输入张量input所有元素的和。
  • torch.sum(input, dim, keepdim=False, *, dtype=None):返回给定维度dim中输入张量的每一行的总和。如果dim是一个维度列表,则对所有维度进行缩小。如果keepdimTrue,则输出张量的大小与输入的大小相同,但维度dim的大小为1。否则,dim会被挤压(参考torch.squeeze())。

语法

dart 复制代码
torch.sum(input, *, dtype=None) -> Tensor
torch.sum(input, dim, keepdim=False, *, dtype=None) -> Tensor

参数

  • input:输入张量
  • dim:[可选, int/tuple] 要减少的一个或多个维度。如果为None,则所有维度都将被裁剪。
  • keepdim:[bool] 输出张量是否保留了dim
  • dtype:[可选, torch.dtype] 返回张量的所需数据类型。如果指定,则在执行操作之前将输入张量强制转换为dtype。这对于防止数据类型溢出非常有用,默认值为None

实例

dart 复制代码
>>> a = torch.randn(1, 3)
>>> a
tensor([[ 0.1133, -0.9567,  0.2958]])
>>> torch.sum(a)
tensor(-0.5475)
>>> a = torch.randn(4, 4)
>>> a
tensor([[ 0.0569, -0.2475,  0.0737, -0.3429],
        [-0.2993,  0.9138,  0.9337, -1.6864],
        [ 0.1132,  0.7892, -0.1003,  0.5688],
        [ 0.3637, -0.9906, -0.4752, -1.5197]])
>>> torch.sum(a, 1)
tensor([-0.4598, -0.1381,  1.3708, -2.6217])
>>> b = torch.arange(4 * 5 * 6).view(4, 5, 6)
>>> torch.sum(b, (2, 1))
tensor([  435.,  1335.,  2235.,  3135.])
相关推荐
李元豪20 小时前
MetaGPT、AutoGen、XAgent camel仔细对比
人工智能
AndrewHZ20 小时前
【图像处理基石】图像Inpainting入门详解
图像处理·人工智能·深度学习·opencv·transformer·图像修复·inpainting
jiushun_suanli20 小时前
PyTorch CV模型实战全流程(一)
人工智能·pytorch·python
学技术的大胜嗷20 小时前
如何裁剪YOLOv8m的大目标检测头并验证其结构
深度学习·yolo·目标检测·计算机视觉
大千AI助手20 小时前
HOSVD(高阶奇异值分解):高维数据的“解剖术”
人工智能·线性代数·矩阵·张量·svd·hosvd·高阶奇异值分解
mit6.82421 小时前
[nanoGPT] 编排训练 | `get_batch` | AdamW | `get_lr` | 分布式训练(DDP)
人工智能
rengang6621 小时前
30-机器学习应用案例:展示机器学习在各行业中的典型应用实例
人工智能·机器学习
盈创力和200721 小时前
以太网多参量传感器:超越温湿度的“智能嗅探”,守护每一方空气的安全
大数据·人工智能
wwlsm_zql21 小时前
江西移动5G赋能:电力行业智能化革新探秘
人工智能·5g
迪三达21 小时前
GPT-0: Attention+Transformer+可视化
gpt·深度学习·transformer