深入浅出Pytorch函数——torch.sum

分类目录:《深入浅出Pytorch函数》总目录

相关文章:

· 深入浅出Pytorch函数------torch.Tensor


函数torch.sum有两种形式:

  • torch.sum(input, *, dtype=None):返回输入张量input所有元素的和。
  • torch.sum(input, dim, keepdim=False, *, dtype=None):返回给定维度dim中输入张量的每一行的总和。如果dim是一个维度列表,则对所有维度进行缩小。如果keepdimTrue,则输出张量的大小与输入的大小相同,但维度dim的大小为1。否则,dim会被挤压(参考torch.squeeze())。

语法

dart 复制代码
torch.sum(input, *, dtype=None) -> Tensor
torch.sum(input, dim, keepdim=False, *, dtype=None) -> Tensor

参数

  • input:输入张量
  • dim:[可选, int/tuple] 要减少的一个或多个维度。如果为None,则所有维度都将被裁剪。
  • keepdim:[bool] 输出张量是否保留了dim
  • dtype:[可选, torch.dtype] 返回张量的所需数据类型。如果指定,则在执行操作之前将输入张量强制转换为dtype。这对于防止数据类型溢出非常有用,默认值为None

实例

dart 复制代码
>>> a = torch.randn(1, 3)
>>> a
tensor([[ 0.1133, -0.9567,  0.2958]])
>>> torch.sum(a)
tensor(-0.5475)
>>> a = torch.randn(4, 4)
>>> a
tensor([[ 0.0569, -0.2475,  0.0737, -0.3429],
        [-0.2993,  0.9138,  0.9337, -1.6864],
        [ 0.1132,  0.7892, -0.1003,  0.5688],
        [ 0.3637, -0.9906, -0.4752, -1.5197]])
>>> torch.sum(a, 1)
tensor([-0.4598, -0.1381,  1.3708, -2.6217])
>>> b = torch.arange(4 * 5 * 6).view(4, 5, 6)
>>> torch.sum(b, (2, 1))
tensor([  435.,  1335.,  2235.,  3135.])
相关推荐
城电科技31 分钟前
城电科技 | 探索光伏景观廊道:适用于零碳园区/公园/景区/校园/乡村长廊建设
大数据·人工智能·科技
liuyunshengsir40 分钟前
LangChain使用大语言模型构建强大的应用程序
人工智能·语言模型·langchain
点我头像干啥40 分钟前
第1节:计算机视觉发展简史
人工智能·深度学习·神经网络·计算机视觉
深度学习lover40 分钟前
<数据集>苹果识别数据集<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·苹果识别
EasyGBS1 小时前
国标GB28181协议EasyCVR视频融合平台:5G时代远程监控赋能通信基站安全管理
大数据·网络·人工智能·安全·音视频
新加坡内哥谈技术1 小时前
微软庆祝它成立整整50周年
人工智能
_一条咸鱼_2 小时前
深入剖析 AI 大模型的反向传播原理
人工智能·深度学习·机器学习
(initial)2 小时前
超越简单检索:探索知识图谱与大型语言模型的协同进化之路
人工智能·语言模型·知识图谱
Jamence2 小时前
多模态大语言模型arxiv论文略读(九)
人工智能·语言模型·自然语言处理