【机器学习】随机森林 – Random forest

随机森林(Random Forest)是一种集成学习(Ensemble Learning)方法,用于解决分类和回归问题。它由多个决策树组成,每个决策树都是一个弱分类器。

随机森林的主要特点包括:

  1. 随机选择特征子集:对于每个决策树,随机森林会从原始特征中随机选择一部分特征作为训练子集。这样做可以防止某些重要特征在整个模型中占据主导地位。

  2. 随机选择样本子集:对于每个决策树,随机森林会从原始数据集中进行有放回抽样,构建不同的训练样本子集。这种抽样方法被称为自助采样(bootstrap sampling),能够产生不同的训练数据集,增加了模型的多样性。

  3. 集成投票决策:当需要对新样本进行分类时,随机森林中的每个决策树都会输出一个预测结果。最终的分类结果是通过投票机制来确定,即选择票数最多的类别作为最终的预测结果。

随机森林具有以下优点:

  1. 高鲁棒性:随机森林能够处理高维度的数据和大量的训练样本,对噪声和异常值有较好的鲁棒性。

  2. 减少过拟合:通过随机选择特征子集和样本子集,随机森林减少了模型的方差,避免了过拟合的问题。

  3. 可解释性:随机森林可以提供各个特征对结果的重要性程度,能够帮助理解数据中的关键特征。

  4. 并行化处理:由于每个决策树之间是独立构建的,随机森林可以通过并行计算来加速训练和预测过程。

随机森林在许多实际应用中都表现出很好的性能,并且被广泛应用于数据挖掘、特征选择、图像识别等领域。

相关推荐
冬奇Lab1 分钟前
一天一个开源项目(第25篇):Clawra - 为 OpenClaw 赋予「自拍」能力的 Skill
人工智能·开源·资讯
逻极3 分钟前
BMAD之核心架构:为什么“方案化”至关重要 (Phase 3 Solutioning)——必学!BMAD 方法论架构从入门到精通
人工智能·ai·系统架构·ai编程·敏捷开发·ai辅助编程·bmad
2501_926978336 分钟前
分形时空理论框架:从破缺悖论到意识宇宙的物理学新范式引言(理论概念版)--AGI理论系统基础1.1
java·服务器·前端·人工智能·经验分享·agi
heimeiyingwang17 分钟前
AI 赋能企业业务:从降本增效到业务创新
人工智能
阿林来了26 分钟前
Flutter三方库适配OpenHarmony【flutter_speech】— 语音识别监听器实现
人工智能·flutter·语音识别·harmonyos
教男朋友学大模型30 分钟前
LoRA 为什么必须把一个矩阵初始化为0
人工智能·算法·面试·求职招聘
小鸡吃米…30 分钟前
TensorFlow—— 卷积神经网络(CNN)与循环神经网络(RNN)的区别
人工智能·tensorflow
智能交通技术33 分钟前
iTSTech:从AGI到AMI——自动驾驶的新方向 2026
人工智能·机器学习·自动驾驶·agi
小lo想吃棒棒糖34 分钟前
思路启发:基于预测编码的Transformer无反向传播训练:局部收敛性与全局最优性分析:
人工智能·深度学习·transformer
来两个炸鸡腿35 分钟前
【Datawhale组队学习202602】Hello-Agents task04智能体经典范式构建
人工智能·学习·大模型·智能体