【机器学习】随机森林 – Random forest

随机森林(Random Forest)是一种集成学习(Ensemble Learning)方法,用于解决分类和回归问题。它由多个决策树组成,每个决策树都是一个弱分类器。

随机森林的主要特点包括:

  1. 随机选择特征子集:对于每个决策树,随机森林会从原始特征中随机选择一部分特征作为训练子集。这样做可以防止某些重要特征在整个模型中占据主导地位。

  2. 随机选择样本子集:对于每个决策树,随机森林会从原始数据集中进行有放回抽样,构建不同的训练样本子集。这种抽样方法被称为自助采样(bootstrap sampling),能够产生不同的训练数据集,增加了模型的多样性。

  3. 集成投票决策:当需要对新样本进行分类时,随机森林中的每个决策树都会输出一个预测结果。最终的分类结果是通过投票机制来确定,即选择票数最多的类别作为最终的预测结果。

随机森林具有以下优点:

  1. 高鲁棒性:随机森林能够处理高维度的数据和大量的训练样本,对噪声和异常值有较好的鲁棒性。

  2. 减少过拟合:通过随机选择特征子集和样本子集,随机森林减少了模型的方差,避免了过拟合的问题。

  3. 可解释性:随机森林可以提供各个特征对结果的重要性程度,能够帮助理解数据中的关键特征。

  4. 并行化处理:由于每个决策树之间是独立构建的,随机森林可以通过并行计算来加速训练和预测过程。

随机森林在许多实际应用中都表现出很好的性能,并且被广泛应用于数据挖掘、特征选择、图像识别等领域。

相关推荐
chian-ocean几秒前
深入 CANN 生态:使用 `modelzoo-samples` 快速部署视觉模型
人工智能
勾股导航几秒前
Windows安装GPU环境
人工智能·windows·gnu
小羊不会打字5 分钟前
探索 CANN 生态:深入解析 `ops-transformer` 项目
人工智能·深度学习·transformer
哈__6 分钟前
CANN加速多模态融合推理:跨模态对齐与特征交互优化
人工智能·交互
红迅低代码平台(redxun)6 分钟前
构建企业“第二大脑“:AI低代码平台如何打造智能知识中枢?
人工智能·低代码·ai agent·ai开发平台·智能体开发平台·红迅软件
Loo国昌7 分钟前
【大模型应用开发】第六阶段:模型安全与可解释性
人工智能·深度学习·安全·transformer
乾元10 分钟前
终端安全(EDR):用深度学习识别未知勒索软件
运维·人工智能·网络协议·安全·网络安全·自动化·安全架构
深鱼~12 分钟前
构建高效Transformer模型:ops-transformer算子使用手册
人工智能·深度学习·transformer·cann
人工智能AI技术14 分钟前
AI编程工具测评:2026年该选Copilot、Cursor还是免费开源方案?
人工智能
心疼你的一切16 分钟前
药物发现革命:CANN加速的AI分子生成与优化系统
数据仓库·人工智能·深度学习·aigc·cann