【机器学习】随机森林 – Random forest

随机森林(Random Forest)是一种集成学习(Ensemble Learning)方法,用于解决分类和回归问题。它由多个决策树组成,每个决策树都是一个弱分类器。

随机森林的主要特点包括:

  1. 随机选择特征子集:对于每个决策树,随机森林会从原始特征中随机选择一部分特征作为训练子集。这样做可以防止某些重要特征在整个模型中占据主导地位。

  2. 随机选择样本子集:对于每个决策树,随机森林会从原始数据集中进行有放回抽样,构建不同的训练样本子集。这种抽样方法被称为自助采样(bootstrap sampling),能够产生不同的训练数据集,增加了模型的多样性。

  3. 集成投票决策:当需要对新样本进行分类时,随机森林中的每个决策树都会输出一个预测结果。最终的分类结果是通过投票机制来确定,即选择票数最多的类别作为最终的预测结果。

随机森林具有以下优点:

  1. 高鲁棒性:随机森林能够处理高维度的数据和大量的训练样本,对噪声和异常值有较好的鲁棒性。

  2. 减少过拟合:通过随机选择特征子集和样本子集,随机森林减少了模型的方差,避免了过拟合的问题。

  3. 可解释性:随机森林可以提供各个特征对结果的重要性程度,能够帮助理解数据中的关键特征。

  4. 并行化处理:由于每个决策树之间是独立构建的,随机森林可以通过并行计算来加速训练和预测过程。

随机森林在许多实际应用中都表现出很好的性能,并且被广泛应用于数据挖掘、特征选择、图像识别等领域。

相关推荐
微学AI1 分钟前
融合注意力机制和BiGRU的电力领域发电量预测项目研究,并给出相关代码
人工智能·深度学习·自然语言处理·注意力机制·bigru
知来者逆13 分钟前
计算机视觉——速度与精度的完美结合的实时目标检测算法RF-DETR详解
图像处理·人工智能·深度学习·算法·目标检测·计算机视觉·rf-detr
一勺汤16 分钟前
YOLOv11改进-双Backbone架构:利用双backbone提高yolo11目标检测的精度
人工智能·yolo·双backbone·double backbone·yolo11 backbone·yolo 双backbone
武汉唯众智创18 分钟前
高职人工智能技术应用专业(计算机视觉方向)实训室解决方案
人工智能·计算机视觉·人工智能实训室·计算机视觉实训室·人工智能计算机视觉实训室
Johny_Zhao29 分钟前
MySQL 高可用集群搭建部署
linux·人工智能·mysql·信息安全·云计算·shell·yum源·系统运维·itsm
一只可爱的小猴子38 分钟前
2022李宏毅老师机器学习课程笔记
人工智能·笔记·机器学习
地瓜机器人44 分钟前
乐聚机器人与地瓜机器人达成战略合作,联合发布Aelos Embodied具身智能
人工智能·机器人
带娃的IT创业者1 小时前
《AI大模型趣味实战》基于RAG向量数据库的知识库AI问答助手设计与实现
数据库·人工智能
__Benco1 小时前
OpenHarmony - 小型系统内核(LiteOS-A)(十),魔法键使用方法,用户态异常信息说明
人工智能·harmonyos
小杨4041 小时前
python入门系列二十(peewee)
人工智能·python·pycharm