【机器学习】随机森林 – Random forest

随机森林(Random Forest)是一种集成学习(Ensemble Learning)方法,用于解决分类和回归问题。它由多个决策树组成,每个决策树都是一个弱分类器。

随机森林的主要特点包括:

  1. 随机选择特征子集:对于每个决策树,随机森林会从原始特征中随机选择一部分特征作为训练子集。这样做可以防止某些重要特征在整个模型中占据主导地位。

  2. 随机选择样本子集:对于每个决策树,随机森林会从原始数据集中进行有放回抽样,构建不同的训练样本子集。这种抽样方法被称为自助采样(bootstrap sampling),能够产生不同的训练数据集,增加了模型的多样性。

  3. 集成投票决策:当需要对新样本进行分类时,随机森林中的每个决策树都会输出一个预测结果。最终的分类结果是通过投票机制来确定,即选择票数最多的类别作为最终的预测结果。

随机森林具有以下优点:

  1. 高鲁棒性:随机森林能够处理高维度的数据和大量的训练样本,对噪声和异常值有较好的鲁棒性。

  2. 减少过拟合:通过随机选择特征子集和样本子集,随机森林减少了模型的方差,避免了过拟合的问题。

  3. 可解释性:随机森林可以提供各个特征对结果的重要性程度,能够帮助理解数据中的关键特征。

  4. 并行化处理:由于每个决策树之间是独立构建的,随机森林可以通过并行计算来加速训练和预测过程。

随机森林在许多实际应用中都表现出很好的性能,并且被广泛应用于数据挖掘、特征选择、图像识别等领域。

相关推荐
一条星星鱼6 分钟前
从0到1:如何用统计学“看透”不同睡眠PSG数据集的差异(域偏差分析实战)
人工智能·深度学习·算法·概率论·归一化·睡眠psg
TMT星球10 分钟前
TCL华星t8项目正式开工,总投资额约295亿元
大数据·人工智能
猫头虎11 分钟前
DeepSeek刚刚开源了一个3B的 OCR模型:什么是DeepSeek-OCR?单张A100-40G每天可以处理20万+页文档
人工智能·开源·whisper·prompt·aigc·ocr·gpu算力
lky不吃香菜14 分钟前
上下文工程的艺术与科学:来自 LangChain 和 Manus 的前沿洞察
人工智能
香菜烤面包15 分钟前
Attention:MHA->MQA->GQA->MLA
人工智能·深度学习
阿里云大数据AI技术16 分钟前
云栖实录 | 驶入智驾深水区:广汽的“数据突围“之路
大数据·人工智能
肥晨17 分钟前
OCR 模型受全球关注,实测到底谁更出色?
人工智能·ai编程
景天科技苑22 分钟前
【AI智能体开发】什么是LLM?如何在本地搭建属于自己的Ai智能体?
人工智能·llm·agent·智能体·ai智能体·ollama·智能体搭建
skywalk816323 分钟前
用Trae自动生成一个围棋小程序
人工智能·小程序
nju_spy27 分钟前
牛客网 AI题(一)机器学习 + 深度学习
人工智能·深度学习·机器学习·lstm·笔试·损失函数·自注意力机制