【机器学习】随机森林 – Random forest

随机森林(Random Forest)是一种集成学习(Ensemble Learning)方法,用于解决分类和回归问题。它由多个决策树组成,每个决策树都是一个弱分类器。

随机森林的主要特点包括:

  1. 随机选择特征子集:对于每个决策树,随机森林会从原始特征中随机选择一部分特征作为训练子集。这样做可以防止某些重要特征在整个模型中占据主导地位。

  2. 随机选择样本子集:对于每个决策树,随机森林会从原始数据集中进行有放回抽样,构建不同的训练样本子集。这种抽样方法被称为自助采样(bootstrap sampling),能够产生不同的训练数据集,增加了模型的多样性。

  3. 集成投票决策:当需要对新样本进行分类时,随机森林中的每个决策树都会输出一个预测结果。最终的分类结果是通过投票机制来确定,即选择票数最多的类别作为最终的预测结果。

随机森林具有以下优点:

  1. 高鲁棒性:随机森林能够处理高维度的数据和大量的训练样本,对噪声和异常值有较好的鲁棒性。

  2. 减少过拟合:通过随机选择特征子集和样本子集,随机森林减少了模型的方差,避免了过拟合的问题。

  3. 可解释性:随机森林可以提供各个特征对结果的重要性程度,能够帮助理解数据中的关键特征。

  4. 并行化处理:由于每个决策树之间是独立构建的,随机森林可以通过并行计算来加速训练和预测过程。

随机森林在许多实际应用中都表现出很好的性能,并且被广泛应用于数据挖掘、特征选择、图像识别等领域。

相关推荐
shayudiandian10 分钟前
用深度学习实现语音识别系统
人工智能·深度学习·语音识别
EkihzniY6 小时前
AI+OCR:解锁数字化新视界
人工智能·ocr
东哥说-MES|从入门到精通6 小时前
GenAI-生成式人工智能在工业制造中的应用
大数据·人工智能·智能制造·数字化·数字化转型·mes
铅笔侠_小龙虾7 小时前
深度学习理论推导--梯度下降法
人工智能·深度学习
kaikaile19957 小时前
基于遗传算法的车辆路径问题(VRP)解决方案MATLAB实现
开发语言·人工智能·matlab
lpfasd1237 小时前
第1章_LangGraph的背景与设计哲学
人工智能
Aevget8 小时前
界面组件Kendo UI for React 2025 Q3亮点 - AI功能全面提升
人工智能·react.js·ui·界面控件·kendo ui·ui开发
桜吹雪8 小时前
LangChain.js/DeepAgents可观测性
javascript·人工智能
&&Citrus8 小时前
【杂谈】SNNU公共计算平台:深度学习服务器配置与远程开发指北
服务器·人工智能·vscode·深度学习·snnu
乌恩大侠8 小时前
Spark 机器上修改缓冲区大小
人工智能·usrp