Keras 初级教程:深度学习的开始

Keras 是一个用于构建和训练深度学习模型的高级接口,它可以运行在多种底层引擎上,如 TensorFlow、CNTK 或 Theano。Keras 的核心数据结构是"模型",模型是一种组织网络层的方式。Keras 中主要的模型是 Sequential 模型和函数式 API 模型。在这篇文章中,我们将通过一些基础的例子来探索 Keras 的核心功能。

一、安装与基本设置

首先,我们需要安装 Keras。由于 Keras 是一个在 TensorFlow 之上的高级 API,因此我们需要先安装 TensorFlow,然后再安装 Keras。

python 复制代码
pip install tensorflow
pip install keras

在安装好 Keras 之后,我们可以进行一些基本的设置。例如,设置 Keras 的后端引擎。在 Keras 中,我们可以通过以下方式设置后端引擎:

python 复制代码
import os
os.environ['KERAS_BACKEND']='tensorflow'

二、Sequential 模型

在 Keras 中,最简单的模型是 Sequential 模型,它是由多个网络层线性堆叠的。下面我们用 Sequential 模型来实现一个简单的全连接神经网络。

python 复制代码
from keras.models import Sequential
from keras.layers import Dense

model = Sequential()
model.add(Dense(32, input_dim=784))
model.add(Dense(10, activation='softmax'))

在上述代码中,我们首先导入了 Keras 的 Sequential 模型和 Dense 层。然后,我们创建了一个 Sequential 模型,并向其中添加了两个 Dense 层。

第一个 Dense 层有 32 个节点,接受的输入数据维度为 784(这可以理解为我们的数据有 784 个特征)。第二个 Dense 层有 10 个节点,使用 softmax 函数作为激活函数,输出 10 类的概率分布。

三、模型编译

定义好模型结构后,我们可以使用 .compile() 方法来配置学习过程。.compile() 方法接收三个参数:优化器 optimizer、损失函数 loss 和评估指标 metrics。

python 复制代码
model.compile(optimizer='rmsprop',
              loss='categorical_crossentropy',
              metrics=['accuracy'])

在上述代码中,我们设置了优化器为 RMSprop,损失函数为交叉熵损失函数,评估指标为准确率。

四、模型训练

在编译模型后,我们可以用数据来训练模型。在 Keras 中,我们可以使用 .fit() 方法来训练模型,该方法接收两个参数:输入数据和目标数据。

python 复制代码
# 假设我们有一些训练数据和标签
train_data = ...
train_labels = ...

model.fit(train_data, train_labels, epochs=10, batch_size=32)

在上述代码中,我们设置了训练的轮数为 10,每个批次的样本数量为 32。

这就是使用 Keras 创建和训练深度学习模型的基础流程。在下一篇文章中,我们将介绍更多关于 Keras 的高级用法。

相关推荐
vocal14 分钟前
谷歌第七版Prompt Engineering—第一部分
人工智能
MonkeyKing_sunyuhua15 分钟前
5.6 Microsoft Semantic Kernel:专注于将LLM集成到现有应用中的框架
人工智能·microsoft·agent
arbboter23 分钟前
【AI插件开发】Notepad++ AI插件开发1.0发布和使用说明
人工智能·大模型·notepad++·ai助手·ai插件·aicoder·notepad++插件开发
BB_CC_DD23 分钟前
四. 以Annoy算法建树的方式聚类清洗图像数据集,一次建树,无限次聚类搜索,提升聚类搜索效率。(附完整代码)
深度学习·算法·聚类
IT_Octopus35 分钟前
AI工程pytorch小白TorchServe部署模型服务
人工智能·pytorch·python
果冻人工智能40 分钟前
AI军备竞赛:我们是不是正在造一个无法控制的神?
人工智能
暴龙胡乱写博客1 小时前
OpenCV---图像预处理(四)
人工智能·opencv·计算机视觉
程序员辣条1 小时前
深度测评 RAG 应用评估框架:指标最全面的 RAGas
人工智能·程序员
curdcv_po1 小时前
字节跳动Trae:一款革命性的免费AI编程工具完全评测
人工智能·trae
程序员辣条1 小时前
为什么需要提示词工程?什么是提示词工程(prompt engineering)?为什么需要提示词工程?收藏我这一篇就够了!
人工智能·程序员·产品经理