Keras 初级教程:深度学习的开始

Keras 是一个用于构建和训练深度学习模型的高级接口,它可以运行在多种底层引擎上,如 TensorFlow、CNTK 或 Theano。Keras 的核心数据结构是"模型",模型是一种组织网络层的方式。Keras 中主要的模型是 Sequential 模型和函数式 API 模型。在这篇文章中,我们将通过一些基础的例子来探索 Keras 的核心功能。

一、安装与基本设置

首先,我们需要安装 Keras。由于 Keras 是一个在 TensorFlow 之上的高级 API,因此我们需要先安装 TensorFlow,然后再安装 Keras。

python 复制代码
pip install tensorflow
pip install keras

在安装好 Keras 之后,我们可以进行一些基本的设置。例如,设置 Keras 的后端引擎。在 Keras 中,我们可以通过以下方式设置后端引擎:

python 复制代码
import os
os.environ['KERAS_BACKEND']='tensorflow'

二、Sequential 模型

在 Keras 中,最简单的模型是 Sequential 模型,它是由多个网络层线性堆叠的。下面我们用 Sequential 模型来实现一个简单的全连接神经网络。

python 复制代码
from keras.models import Sequential
from keras.layers import Dense

model = Sequential()
model.add(Dense(32, input_dim=784))
model.add(Dense(10, activation='softmax'))

在上述代码中,我们首先导入了 Keras 的 Sequential 模型和 Dense 层。然后,我们创建了一个 Sequential 模型,并向其中添加了两个 Dense 层。

第一个 Dense 层有 32 个节点,接受的输入数据维度为 784(这可以理解为我们的数据有 784 个特征)。第二个 Dense 层有 10 个节点,使用 softmax 函数作为激活函数,输出 10 类的概率分布。

三、模型编译

定义好模型结构后,我们可以使用 .compile() 方法来配置学习过程。.compile() 方法接收三个参数:优化器 optimizer、损失函数 loss 和评估指标 metrics。

python 复制代码
model.compile(optimizer='rmsprop',
              loss='categorical_crossentropy',
              metrics=['accuracy'])

在上述代码中,我们设置了优化器为 RMSprop,损失函数为交叉熵损失函数,评估指标为准确率。

四、模型训练

在编译模型后,我们可以用数据来训练模型。在 Keras 中,我们可以使用 .fit() 方法来训练模型,该方法接收两个参数:输入数据和目标数据。

python 复制代码
# 假设我们有一些训练数据和标签
train_data = ...
train_labels = ...

model.fit(train_data, train_labels, epochs=10, batch_size=32)

在上述代码中,我们设置了训练的轮数为 10,每个批次的样本数量为 32。

这就是使用 Keras 创建和训练深度学习模型的基础流程。在下一篇文章中,我们将介绍更多关于 Keras 的高级用法。

相关推荐
LaughingZhu2 小时前
Product Hunt 每日热榜 | 2026-02-14
数据库·人工智能·经验分享·神经网络·搜索引擎·chatgpt
大模型探员2 小时前
告别答非所问!深度解析文档切分如何决定RAG的搜索上限
人工智能
民乐团扒谱机2 小时前
【读论文】深度学习中的卷积算术指南 A guide to convolution arithmetic for deep learning
人工智能·深度学习·神经网络·机器学习·cnn·卷积神经网络·图像识别
byzh_rc2 小时前
[深度学习网络从入门到入土] 拓展 - Inception
网络·人工智能·深度学习
阿里巴巴淘系技术团队官网博客2 小时前
从应用架构的视角看退小宝AI助手落地现状
人工智能·架构
寻星探路2 小时前
【JVM 终极通关指南】万字长文从底层到实战全维度深度拆解 Java 虚拟机
java·开发语言·jvm·人工智能·python·算法·ai
Elastic 中国社区官方博客2 小时前
DevRel 通讯 — 2026 年 2 月
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·jina
一个天蝎座 白勺 程序猿2 小时前
飞算JavaAI:从情绪价值到代码革命,智能合并项目与定制化开发新范式
人工智能·ai·自动化·javaai
田里的水稻3 小时前
FA_融合和滤波(FF)-联邦滤波(FKF)
人工智能·算法·数学建模·机器人·自动驾驶
摘星编程3 小时前
解析CANN ops-transformer的FlashAttention算子:注意力机制的内存优化
人工智能·深度学习·transformer