自然语言处理从入门到应用——LangChain:提示(Prompts)-[基础知识]

分类目录:《自然语言处理从入门到应用》总目录


模型编程的新方法是使用提示(Prompts)。提示指的是模型的输入。这个输入通常由多个组件构成。PromptTemplate负责构建这个输入,LangChain提供了多个类和函数,使得构建和处理提示变得简单。《自然语言处理从入门到应用------LangChain:提示(Prompts)》系列文章包含一下几个部分:

  • LLM Prompt模板 :揭示如何使用PromptTemplate来提示语言模型
  • Chat Prompt模板 :揭示如何使用PromptTemplate来提示对话模型
  • 示例选择器 :在提示中包含示例往往很有用,这些示例可以根据需要进行动态选择
  • 输出解析器 :析语言模型和对话模型的输出文本。在很多时候,我们可能希望获得更结构化的信息,这就是输出解析器发挥作用的地方。
  • 输出解析器:指示模型应如何格式化输出, 将输出解析为所需的格式,也包括必要时进行重试。

提示是传递给语言模型的值,这个值可以是字符串(用于语言模型)或消息列表(用于对话模型)。这些提示的数据类型相当简单,但它们的构造却并非如此。LangChain的价值在于:

  • 用于字符串提示和消息提示的标准接口
  • 用于字符串提示模板和消息提示模板的标准接口
  • 示例选择器:用于将示例插入提示中,以便语言模型进行遵循
  • 输出解析器:用于将指令插入到提示中,作为语言模型输出信息的格式,以及将字符串输出解析为所需格式的方法。

自然语言处理从入门到应用------LangChain:提示(Prompts)》系列文章为特定类型的字符串提示、特定类型的聊天提示、示例选择器和输出解析器提供了深入的文档。在本文中,我们先介绍了一个用于简单提示的标准接口的快速入门指南。

PromptTemplates

PromptTemplates负责构建提示值。这些PromptTemplates可以执行格式化、示例选择等操作。从高层次上讲,这些基本上是公开了format_prompt方法以构建提示的对象。在内部,可以发生任何事情。

dart 复制代码
from langchain.prompts import PromptTemplate, ChatPromptTemplate
string_prompt = PromptTemplate.from_template("tell me a joke about {subject}")
chat_prompt = ChatPromptTemplate.from_template("tell me a joke about {subject}")
string_prompt_value = string_prompt.format_prompt(subject="soccer")
chat_prompt_value = chat_prompt.format_prompt(subject="soccer")
to_string

当传递给LLM(预期为原始文本)时调用的方法:

  • string_prompt_value.to_string()
  • chat_prompt_value.to_string()
to_messages

当传递给ChatModel(预期为消息列表)时调用的方法。

  • string_prompt_value.to_messages()
  • chat_prompt_value.to_messages()

示例:

dart 复制代码
[HumanMessage(content='tell me a joke about soccer', additional_kwargs={}, example=False)]

参考文献:

1\] LangChain 🦜️🔗 中文网,跟着LangChain一起学LLM/GPT开发:https://www.langchain.com.cn/ \[2\] LangChain中文网 - LangChain 是一个用于开发由语言模型驱动的应用程序的框架:http://www.cnlangchain.com/

相关推荐
LgZhu(Yanker)1 小时前
27、企业维修保养(M&R)全流程管理:从预防性维护到智能运维的进阶之路
大数据·运维·人工智能·erp·设备·维修·保养
ModelWhale2 小时前
“大模型”技术专栏 | 和鲸 AI Infra 架构总监朱天琦:大模型微调与蒸馏技术的全景分析与实践指南(上)
人工智能·大模型·大语言模型
lxmyzzs4 小时前
【图像算法 - 08】基于 YOLO11 的抽烟检测系统(包含环境搭建 + 数据集处理 + 模型训练 + 效果对比 + 调参技巧)
人工智能·yolo·目标检测·计算机视觉
霖004 小时前
ZYNQ实现FFT信号处理项目
人工智能·经验分享·神经网络·机器学习·fpga开发·信号处理
GIS数据转换器4 小时前
AI 技术在智慧城市建设中的融合应用
大数据·人工智能·机器学习·计算机视觉·系统架构·智慧城市
竹子_234 小时前
《零基础入门AI:传统机器学习进阶(从拟合概念到K-Means算法)》
人工智能·算法·机器学习
上海云盾-高防顾问5 小时前
DDoS 防护的未来趋势:AI 如何重塑安全行业?
人工智能·安全·ddos
Godspeed Zhao5 小时前
自动驾驶中的传感器技术17——Camera(8)
人工智能·机器学习·自动驾驶·camera·cis
摆烂工程师5 小时前
GPT-5 即将凌晨1点进行发布,免费用户可以使用 GPT-5
前端·人工智能·程序员
今天也不想动5 小时前
文献解读-生境分析亚区域选择+2D_DL+3D_DL-局部晚期食管鳞状细胞癌新辅助化疗免疫治疗反应预测
人工智能·影像组学·生境分析