Pytorch个人学习记录总结 10

目录

优化器


优化器

官方文档地址:torch.optimhttps://pytorch.org/docs/stable/optim.html

Debug过程中查看的grad所在的位置:

model --> Protected Atributes --> _modules --> 'model' --> Protected Atributes --> _modules --> '0'(任选一个conv层) --> weight(查看weight下的data和grad的变化)

简易训练代码,添加了Loss、Optim。

python 复制代码
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torchvision.transforms import transforms

dataset = torchvision.datasets.CIFAR10('./dataset', train=False, transform=transforms.ToTensor(), download=True)
dataloader = DataLoader(dataset, batch_size=2, shuffle=True)


class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.model = Sequential(
            Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2),
            MaxPool2d(kernel_size=2, stride=2),
            Conv2d(in_channels=32, out_channels=32, kernel_size=5, stride=1, padding=2),
            MaxPool2d(kernel_size=2, stride=2),
            Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=2),
            MaxPool2d(kernel_size=2, stride=2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )

    def forward(self, x):  # 模型前向传播
        return self.model(x)


model = Model()  # 定义模型
loss_cross = nn.CrossEntropyLoss()  # 定义损失函数
optim = torch.optim.SGD(model.parameters(), lr=0.01)  # lr不能过大或者过小。刚开始的lr可设置得较大一点,后面再对lr进行调节
len = len(dataloader)

for epoch in range(20):
    total_loss = 0.0
    for imgs, targets in dataloader:
        outputs = model(imgs)
        res_loss = loss_cross(outputs, targets)

        optim.zero_grad()  # 优化器对model中的每一个参数进行梯度清零
        res_loss.backward()  # 损失反向传播
        optim.step()  # 对model参数开始调优
        total_loss += res_loss
    print('epoch:{}\ttotal_loss:{}\tmean_loss:{}.'.format(epoch, total_loss, total_loss / len))
# epoch:0	total_loss:9374.806640625	mean_loss:1.8749613761901855.
# epoch:1	total_loss:7721.240234375	mean_loss:1.544248104095459.
# epoch:2	total_loss:6830.775390625	mean_loss:1.3661550283432007.
相关推荐
深蓝海拓5 分钟前
PySide6从0开始学习的笔记(四)QMainWindow
笔记·python·学习·pyqt
百胜软件@百胜软件8 分钟前
重塑零售未来:百胜智能中台+胜券AI,赋能品牌零售撬动3100亿增量市场
大数据·人工智能·零售
深蓝海拓13 分钟前
PySide6 的 QSettings简单应用学习笔记
python·学习·pyqt
Shawn_Shawn6 小时前
人工智能入门概念介绍
人工智能
极限实验室6 小时前
程序员爆哭!我们让 COCO AI 接管 GitLab 审查后,团队直接起飞:连 CTO 都说“这玩意儿比人靠谱多了
人工智能·gitlab
Maynor9967 小时前
Z-Image: 100% Free AI Image Generator
人工智能
码界奇点7 小时前
Python从0到100一站式学习路线图与实战指南
开发语言·python·学习·青少年编程·贴图
爬点儿啥7 小时前
[Ai Agent] 10 MCP基础:快速编写你自己的MCP服务器(Server)
人工智能·ai·langchain·agent·transport·mcp
张人玉7 小时前
百度 AI 图像识别 WinForms 应用代码分析笔记
人工智能·笔记·百度
测试人社区-小明8 小时前
智能弹性伸缩算法在测试环境中的实践与验证
人工智能·测试工具·算法·机器学习·金融·机器人·量子计算