Vision Transformer (ViT)

生成式模型与判别式模型

生成式模型,又称概率模型 ,是指通过学习数据的分布来建立模型P(y|x) ,然后利用该模型来生成新的数据。生成式模型的典型代表是朴素贝叶斯模型 ,该模型通过学习数据的分布来建立概率模型,然后利用该模型来生成新的数据。
判别式模型,又称非概率模型 ,是指通过学习输入和输出之间的映射关系来建立模型y=f(x) ,然后利用该模型来预测新的输出。判别式模型的典型代表是支持向量机模型,该模型通过学习输入和输出之间的映射关系来建立分类模型,然后利用该模型来预测新的分类结果。

  • 常见生成式模型:决策树、朴素贝叶斯、隐马尔可夫模型、条件随机场、概率潜在语义分析、潜在狄利克雷分配、高斯混合模型;
  • 常见判别式模型:感知机、支持向量机、K临近、Adaboost、K均值、潜在语义分析、神经网络;
  • 逻辑回归既可以看做是生成式也可以看做是判别式。

结论:vit在中小型数据集上效果不佳,在大型数据集上进行预训练效果较好。

英文积累

de-facto standard 事实上的标准
in conjunction with 与...一起(协力)
unprecedented 无前例的(崭新的)
scaling 可扩展性
inductive biases 归纳偏置 (相当于先验知识,卷积神经网络中有两个先验知识即假设 ,第一个是locality(局部性):CNN以滑动窗口形式进行卷积,因此假设图片上相邻的区域会有相邻的特征; 另外一个归纳偏置是"平移等变性":translation equivariance,用公式表示为f(g(x))=g(f(x)),可以理解f为卷积操作,g为平移操作,即假设无论先做卷积还是先做平移操作,最后的结果是一样的。卷积核就像一个模板template一样,不论一张图片同样的物体移到哪里,只要是同样的输入进来,遇到同样的卷积核,得到的输出永远是一样的。
used very sparingly 使用非常少
Hybrid Architecture 混合架构 (前面CNN得到的特征图拉平转为embedding输入注意力的encoder)
spatial size 空间大小
interpolation 插值
manually 手动的
Model Variants 模型变体
inversely proportional 成反比的

相关推荐
信田君95271 天前
瑞莎星瑞(Radxa Orion O6) 基于 Android OS 使用 NPU的图片模糊查找APP 开发
android·人工智能·深度学习·神经网络
StarPrayers.1 天前
卷积神经网络(CNN)入门实践及Sequential 容器封装
人工智能·pytorch·神经网络·cnn
周末程序猿1 天前
谈谈上下文工程(Context Engineering)
人工智能
一水鉴天1 天前
整体设计 逻辑系统程序 之29 拼语言+ CNN 框架核心定位、三阶段程序与三种交换模式配套的方案讨论 之2
人工智能·神经网络·cnn
海森大数据1 天前
AI破解数学界遗忘谜题:GPT-5重新发现尘封二十年的埃尔德什问题解法
人工智能·gpt
数智顾问1 天前
基于深度学习的卫星图像分类(Kaggle比赛实战)——从数据预处理到模型调优的全流程解析
深度学习
望获linux1 天前
【实时Linux实战系列】Linux 内核的实时组调度(Real-Time Group Scheduling)
java·linux·服务器·前端·数据库·人工智能·深度学习
程序员大雄学编程1 天前
「深度学习笔记4」深度学习优化算法完全指南:从梯度下降到Adam的实战详解
笔记·深度学习·算法·机器学习
Dev7z1 天前
河南特色农产品识别系统:让AI守护“中原味道”
人工智能