x.view()

x.view()就是对tensor进行reshape

python 复制代码
import torch
v1 = torch.range(1, 4)
v2 = v1.view(2, 2)
print(v2)
v3 = v2.view(4,-1)
print(v3)
python 复制代码
tensor([[1., 2.],
        [3., 4.]])
tensor([[1.],
        [2.],
        [3.],
        [4.]])

在函数的参数中经常可以看到-1例如x.view(-1, 4)

这里-1表示一个不确定的数,就是你如果不确定你想要reshape成几行,但是你很肯定要reshape成4列,那不确定的地方就可以写成-1

例如一个长度的16向量x,

x.view(-1, 4)等价于x.view(4, 4)

x.view(-1, 2)等价于x.view(8,2)

相关推荐
Debroon41 分钟前
用FastAPI封装Qwen云端API,本机Postman测试,再用Django做前端界面调用
人工智能
格林威2 小时前
常规环形光源在工业视觉检测上的应用
人工智能·数码相机·计算机视觉·视觉检测·工业相机·工业光源·环形光源
FreeBuf_3 小时前
从“策略对抗”到“模型对抗”:朴智平台如何重塑金融风控新范式?
大数据·人工智能
GJGCY5 小时前
金融智能体的技术底座解析:AI Agent如何实现“认知+执行”闭环?
人工智能·经验分享·ai·金融·自动化
SteveRocket5 小时前
Python机器学习与数据分析教程之pandas
python·机器学习·数据分析
koo3646 小时前
李宏毅机器学习笔记32
人工智能·笔记·机器学习
材料科学研究6 小时前
机器学习催化剂设计!
深度学习·机器学习·orr·催化剂·催化剂设计·oer
材料科学研究6 小时前
机器学习锂离子电池!预估电池!
深度学习·机器学习·锂离子电池·电池·电池健康·电池管理·电池寿命
长桥夜波6 小时前
机器学习日报04
人工智能·机器学习
Cathyqiii7 小时前
Diffusion-TS:一种基于季节性-趋势分解与重构引导的可解释时间序列扩散模型
人工智能·神经网络·1024程序员节