第五章 Opencv图像处理框架实战 5-3 图像阈值与平滑处理

图像阈值

ret, dst = cv2.threshold(src, thresh, maxval, type)

  • src: 输入图,只能输入单通道图像,通常来说为灰度图

  • dst: 输出图

  • thresh: 阈值

  • maxval: 当像素值超过了阈值(或者小于阈值,根据type来决定),所赋予的值

  • type:二值化操作的类型,包含以下5种类型: cv2.THRESH_BINARY; cv2.THRESH_BINARY_INV; cv2.THRESH_TRUNC; cv2.THRESH_TOZERO;cv2.THRESH_TOZERO_INV

  • cv2.THRESH_BINARY 超过阈值部分取maxval(最大值),否则取0

  • cv2.THRESH_BINARY_INV THRESH_BINARY的反转

  • cv2.THRESH_TRUNC 大于阈值部分设为阈值,否则不变

  • cv2.THRESH_TOZERO 大于阈值部分不改变,否则设为0

  • cv2.THRESH_TOZERO_INV THRESH_TOZERO的反转

python 复制代码
ret, thresh1 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY)
ret, thresh2 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY_INV)
ret, thresh3 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TRUNC)
ret, thresh4 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO)
ret, thresh5 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO_INV)

titles = ['Original Image', 'BINARY', 'BINARY_INV', 'TRUNC', 'TOZERO', 'TOZERO_INV']
images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]

for i in range(6):
    plt.subplot(2, 3, i + 1), plt.imshow(images[i], 'gray')
    plt.title(titles[i])
    plt.xticks([]), plt.yticks([])
plt.show()

图像平滑处理

  • 原图像
python 复制代码
img = cv2.imread('lenaNoise.png')

cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

均值滤波

python 复制代码
# 均值滤波
# 简单的平均卷积操作
blur = cv2.blur(img, (3, 3))

cv2.imshow('blur', blur)
cv2.waitKey(0)
cv2.destroyAllWindows()

方框滤波

python 复制代码
# 方框滤波
# 基本和均值一样,可以选择归一化
box = cv2.boxFilter(img,-1,(3,3), normalize=True)  

cv2.imshow('box', box)
cv2.waitKey(0)
cv2.destroyAllWindows()
python 复制代码
# 方框滤波
# 基本和均值一样,可以选择归一化,容易越界
box = cv2.boxFilter(img,-1,(3,3), normalize=False)  

cv2.imshow('box', box)
cv2.waitKey(0)
cv2.destroyAllWindows()

高斯滤波

python 复制代码
# 高斯滤波
# 高斯模糊的卷积核里的数值是满足高斯分布,相当于更重视中间的
aussian = cv2.GaussianBlur(img, (5, 5), 1)  

cv2.imshow('aussian', aussian)
cv2.waitKey(0)
cv2.destroyAllWindows()

中值滤波

python 复制代码
# 中值滤波
# 相当于用中值代替
median = cv2.medianBlur(img, 5)  # 中值滤波

cv2.imshow('median', median)
cv2.waitKey(0)
cv2.destroyAllWindows()

统一展示所有滤波结果

python 复制代码
# 展示所有的
res = np.hstack((blur,aussian,median))
#print (res)
cv2.imshow('median vs average', res)
cv2.waitKey(0)
cv2.destroyAllWindows()
相关推荐
23遇见3 分钟前
基于 CANN 框架的 AI 加速:ops-nn 仓库的关键技术解读
人工智能
Codebee12 分钟前
OoderAgent 企业版 2.0 发布的意义:一次生态战略的全面升级
人工智能
XX風20 分钟前
8.1 PFH&&FPFH
图像处理·算法
光泽雨1 小时前
检测阈值 匹配阈值分析 金字塔
图像处理·人工智能·计算机视觉·机器视觉·smart3
Σίσυφος19001 小时前
PCL 法向量估计-PCA邻域点(经典 kNN 协方差)的协方差矩阵
人工智能·线性代数·矩阵
小鸡吃米…1 小时前
机器学习的商业化变现
人工智能·机器学习
sali-tec1 小时前
C# 基于OpenCv的视觉工作流-章22-Harris角点
图像处理·人工智能·opencv·算法·计算机视觉
2的n次方_1 小时前
ops-math 极限精度优化:INT8/INT4 基础运算的底层指令集映射与核函数复用
人工智能
AI袋鼠帝1 小时前
Claude4.5+Gemini3 接管电脑桌面,这回是真无敌了..
人工智能·windows·aigc
Lun3866buzha1 小时前
农业害虫检测_YOLO11-C3k2-EMSC模型实现与分类识别_1
人工智能·分类·数据挖掘