第五章 Opencv图像处理框架实战 5-3 图像阈值与平滑处理

图像阈值

ret, dst = cv2.threshold(src, thresh, maxval, type)

  • src: 输入图,只能输入单通道图像,通常来说为灰度图

  • dst: 输出图

  • thresh: 阈值

  • maxval: 当像素值超过了阈值(或者小于阈值,根据type来决定),所赋予的值

  • type:二值化操作的类型,包含以下5种类型: cv2.THRESH_BINARY; cv2.THRESH_BINARY_INV; cv2.THRESH_TRUNC; cv2.THRESH_TOZERO;cv2.THRESH_TOZERO_INV

  • cv2.THRESH_BINARY 超过阈值部分取maxval(最大值),否则取0

  • cv2.THRESH_BINARY_INV THRESH_BINARY的反转

  • cv2.THRESH_TRUNC 大于阈值部分设为阈值,否则不变

  • cv2.THRESH_TOZERO 大于阈值部分不改变,否则设为0

  • cv2.THRESH_TOZERO_INV THRESH_TOZERO的反转

python 复制代码
ret, thresh1 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY)
ret, thresh2 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY_INV)
ret, thresh3 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TRUNC)
ret, thresh4 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO)
ret, thresh5 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO_INV)

titles = ['Original Image', 'BINARY', 'BINARY_INV', 'TRUNC', 'TOZERO', 'TOZERO_INV']
images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]

for i in range(6):
    plt.subplot(2, 3, i + 1), plt.imshow(images[i], 'gray')
    plt.title(titles[i])
    plt.xticks([]), plt.yticks([])
plt.show()

图像平滑处理

  • 原图像
python 复制代码
img = cv2.imread('lenaNoise.png')

cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

均值滤波

python 复制代码
# 均值滤波
# 简单的平均卷积操作
blur = cv2.blur(img, (3, 3))

cv2.imshow('blur', blur)
cv2.waitKey(0)
cv2.destroyAllWindows()

方框滤波

python 复制代码
# 方框滤波
# 基本和均值一样,可以选择归一化
box = cv2.boxFilter(img,-1,(3,3), normalize=True)  

cv2.imshow('box', box)
cv2.waitKey(0)
cv2.destroyAllWindows()
python 复制代码
# 方框滤波
# 基本和均值一样,可以选择归一化,容易越界
box = cv2.boxFilter(img,-1,(3,3), normalize=False)  

cv2.imshow('box', box)
cv2.waitKey(0)
cv2.destroyAllWindows()

高斯滤波

python 复制代码
# 高斯滤波
# 高斯模糊的卷积核里的数值是满足高斯分布,相当于更重视中间的
aussian = cv2.GaussianBlur(img, (5, 5), 1)  

cv2.imshow('aussian', aussian)
cv2.waitKey(0)
cv2.destroyAllWindows()

中值滤波

python 复制代码
# 中值滤波
# 相当于用中值代替
median = cv2.medianBlur(img, 5)  # 中值滤波

cv2.imshow('median', median)
cv2.waitKey(0)
cv2.destroyAllWindows()

统一展示所有滤波结果

python 复制代码
# 展示所有的
res = np.hstack((blur,aussian,median))
#print (res)
cv2.imshow('median vs average', res)
cv2.waitKey(0)
cv2.destroyAllWindows()
相关推荐
海边夕阳200618 小时前
【每天一个AI小知识】:什么是生成对抗网络?
人工智能·经验分享·深度学习·神经网络·机器学习·生成对抗网络
Wise玩转AI18 小时前
Day 27|智能体的 UI 与用户交互层
人工智能·python·ui·ai·chatgpt·ai智能体
youcans_19 小时前
【youcans论文精读】VM-UNet:面向医学图像分割的视觉 Mamba UNet 架构
论文阅读·人工智能·计算机视觉·图像分割·状态空间模型
铮铭19 小时前
扩散模型简介:The Annotated Diffusion Model
人工智能·机器人·强化学习·世界模型
轻竹办公PPT19 小时前
轻竹论文:毕业论文AI写作教程
人工智能·ai·ai写作
呵呵哒( ̄▽ ̄)"19 小时前
专项智能练习(课程类型)
人工智能
2501_9181269120 小时前
如何用ai把特定领域的生活成本归零
人工智能·生活·个人开发
Brianna Home20 小时前
[鸿蒙2025领航者闯关] 鸿蒙 6.0 星盾安全架构 + AI 防窥:金融级支付安全实战与深度踩坑实录
人工智能·安全·harmonyos·安全架构
飞哥数智坊21 小时前
V4/R4 没来,但 DeepSeek-V3.2 好像又便宜又好用?
人工智能·deepseek