回归预测 | MATLAB实现SO-CNN-BiLSTM蛇群算法优化卷积双向长短期记忆神经网络多输入单输出回归预测

回归预测 | MATLAB实现SO-CNN-BiLSTM蛇群算法优化卷积双向长短期记忆神经网络多输入单输出回归预测

目录

    • [回归预测 | MATLAB实现SO-CNN-BiLSTM蛇群算法优化卷积双向长短期记忆神经网络多输入单输出回归预测](#回归预测 | MATLAB实现SO-CNN-BiLSTM蛇群算法优化卷积双向长短期记忆神经网络多输入单输出回归预测)

预测效果








基本介绍

Matlab实现SO-CNN-BiLSTM蛇群算法优化卷积双向长短期记忆网络多输入回归预测(完整源码和数据)

1.Matlab实现SO-CNN-BiLSTM蛇群算法优化卷积双向长短期记忆网络(CNN-BiLSTM)多输入单输出回归预测(完整源码和数据)

2.输入多个特征,输出单个变量,多输入单输出回归预测;

3.多指标评价,评价指标包括:R2、MAE、MSE、RMSE等,代码质量极高;

4.蛇群算法优化参数为:学习率,隐含层节点,正则化参数;

5.excel数据,方便替换,运行环境2020及以上。

模型描述

SO-CNN-BiLSTM蛇群算法是一种用于预测的神经网络模型,它结合了卷积神经网络(CNN)和双向长短期记忆神经网络(BiLSTM)的优点,可以有效地捕捉数据中的长期依赖关系和局部特征。

在SO-CNN-BiLSTM蛇群算法中,首先使用CNN对输入数据进行特征提取,然后将提取到的特征序列输入到BiLSTM中进行建模。接着,使用蛇群算法对模型进行优化,以提高模型的预测精度和泛化能力。

多输入单输出回归预测是指模型接受多个输入序列,例如多个传感器的数据,然后预测一个输出序列,例如气温或者股票价格等。这种模型在很多领域都有广泛的应用,例如金融、气象、医疗等。

SO-CNN-BiLSTM蛇群算法可以应用于多输入单输出回归预测问题,它可以处理多个输入序列,并且能够捕获序列之间的依赖关系,从而实现更准确的预测。在实际应用中,可以根据具体的问题进行适当的参数调整和模型优化,以获得最佳的性能。

基于卷积神经网络和双向长短期记忆(BiLSTM)神经网络的深度学习网络结构。采用特征融合的方法,通过卷积网络提取出浅层特征与深层特征并进行联接,对特征通过卷积进行融合,将获得的矢量信息输入BiLSTM单元。

程序设计

clike 复制代码
%%  获取最优种群
   for j = 1 : SearchAgents
       if(fitness_new(j) < GBestF)
          GBestF = fitness_new(j);
          GBestX = X_new(j, :);
       end
   end
   
%%  更新种群和适应度值
   pop_new = X_new;
   fitness = fitness_new;

%%  更新种群 
   [fitness, index] = sort(fitness);
   for j = 1 : SearchAgents
      pop_new(j, :) = pop_new(index(j), :);
   end

%%  得到优化曲线
   curve(i) = GBestF;
   avcurve(i) = sum(curve) / length(curve);
end

%%  得到最优值
Best_pos = GBestX;
Best_score = curve(end);

%%  得到最优参数
NumOfUnits       =abs(round( Best_pos(1,3)));       % 最佳神经元个数
InitialLearnRate =  Best_pos(1,2) ;% 最佳初始学习率
L2Regularization = Best_pos(1,1); % 最佳L2正则化系数
% 
inputSize = k;
outputSize = 1;  %数据输出y的维度  
%  参数设置
opts = trainingOptions('adam', ...                    % 优化算法Adam
    'MaxEpochs', 20, ...                              % 最大训练次数
    'GradientThreshold', 1, ...                       % 梯度阈值
    'InitialLearnRate', InitialLearnRate, ...         % 初始学习率
    'LearnRateSchedule', 'piecewise', ...             % 学习率调整
    'LearnRateDropPeriod', 6, ...                     % 训练次后开始调整学习率
    'LearnRateDropFactor',0.2, ...                    % 学习率调整因子
    'L2Regularization', L2Regularization, ...         % 正则化参数
    'ExecutionEnvironment', 'gpu',...                 % 训练环境
    'Verbose', 0, ...                                 % 关闭优化过程
    'SequenceLength',1,...
    'MiniBatchSize',10,...
    'Plots', 'training-progress');                    % 画出曲线

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501

[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关推荐
机器学习之心21 小时前
粒子群优化双向深度学习!PSO-BiTCN-BiGRU-Attention多输入单输出回归预测
人工智能·深度学习·回归·多输入单输出回归预测·pso-bitcn-bigru
机器学习之心3 天前
回归预测 | MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入单输出回归预测
随机森林·matlab·回归·多输入单输出回归预测·rf-adaboost
机器学习之心1 个月前
回归预测 | Matlab基于SABO-SVR减法平均算法优化支持向量机的数据多输入单输出回归预测
支持向量机·matlab·回归·多输入单输出回归预测·减法平均算法·sabo-svr
机器学习之心1 个月前
回归预测 | Matlab基于POA-SVR鹈鹕算法优化支持向量机的数据多输入单输出回归预测
多输入单输出回归预测·poa-svr·鹈鹕算法优化支持向量机
机器学习之心2 个月前
回归预测 | Matlab实现BES-ESN秃鹰搜索算法优化回声状态网络多输入单输出回归预测
matlab·回归·多输入单输出回归预测·回声状态网络·bes-esn·秃鹰搜索算法优化
机器学习之心3 个月前
JCR一区级 | Matlab实现SO-Transformer-LSTM多变量回归预测(蛇群算法优化)
matlab·lstm·transformer·蛇群算法优化·so
机器学习之心5 个月前
回归预测 | Matlab实现GWO-ESN基于灰狼算法优化回声状态网络的多输入单输出回归预测
多输入单输出回归预测·gwo-esn·灰狼算法优化回声状态网络
机器学习之心6 个月前
回归预测 | Matlab实现NGO-ESN北方苍鹰算法优化回声状态网络多输入单输出回归预测
多输入单输出回归预测·北方苍鹰算法优化·回声状态网络·ngo-esn
机器学习之心6 个月前
分类预测 | Matlab实现CNN-BiLSTM-SAM-Attention卷积双向长短期记忆神经网络融合空间注意力机制的数据分类预测
卷积双向长短期记忆神经网络·数据分类预测·sam-attention·cnn-bilstm-sam·融合空间注意力机制
机器学习之心7 个月前
回归预测 | Matlab基于RIME-SVR霜冰算法优化支持向量机的数据多输入单输出回归预测
支持向量机·多输入单输出回归预测·霜冰算法优化·rime-svr