回归预测 | MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入单输出回归预测

回归预测 | MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入单输出回归预测

目录

预测效果









基本介绍

1.MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入单输出回归预测;

2.运行环境为Matlab2018b;

3.输入多个特征,输出单个变量,多变量回归预测;

4.data为数据集,excel数据,前5列输入,最后1列输出,主程序运行即可,所有文件放在一个文件夹;

5.命令窗口输出R2、MAE、MAPE多指标评价。

模型描述

RF-Adaboost随机森林结合AdaBoost多输入单输出回归预测是一种基于机器学习和集成学习的预测方法,其主要思想是将随机森林和AdaBoost算法相结合,通过多输入单输出回归模型进行预测。

具体流程如下:

数据预处理:对原始数据进行清洗、归一化和分割等预处理步骤。

特征提取:利用RF模型对数据进行特征提取,得到多个特征向量作为AdaBoost算法的输入。

AdaBoost模型训练:利用AdaBoost算法对多个特征向量进行加权组合,得到最终的预测结果。

模型评估:对预测结果进行评估,包括平均绝对误差(MAE)等指标。

模型优化:根据评估结果对模型进行优化,可以尝试调整模型的参数、改变AdaBoost算法的参数等。

预测应用:将优化后的模型应用于实际预测任务中,进行实时预测。

该方法的优点在于,RF模型可以提取数据特征,而AdaBoost算法可以有效地利用多个特征向量进行加权组合,提高预测准确率。同时,该方法不仅适用于单一数据源的预测任务,也可以应用于多数据源的集成预测任务中。缺点在于,该方法对数据量和计算资源的要求较高,需要大量的训练数据和计算能力。

程序设计

clike 复制代码
%% 预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); 

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);

%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);


%%  相关指标计算
%  R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;

disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])

%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;

disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])

%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1')./T_train));
MAPE2 = mean(abs((T_test - T_sim2')./T_test));

disp(['训练集数据的MAPE为:', num2str(MAPE1)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])

%  MBE
mbe1 = sum(abs(T_sim1' - T_train)) ./ M ;
mbe2 = sum(abs(T_sim1' - T_train)) ./ N ;

disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

%均方误差 MSE
mse1 = sum((T_sim1' - T_train).^2)./M;
mse2 = sum((T_sim2' - T_test).^2)./N;

disp(['训练集数据的MSE为:', num2str(mse1)])
disp(['测试集数据的MSE为:', num2str(mse2)])

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关推荐
jie*1 小时前
小杰机器学习(nine)——支持向量机
人工智能·python·机器学习·支持向量机·回归·聚类·sklearn
xwz小王子9 小时前
OpenAI 回归机器人:想把大模型推向物理世界
数据挖掘·回归·机器人
listhi52011 小时前
基于梯度下降、随机梯度下降和牛顿法的逻辑回归MATLAB实现
算法·matlab·逻辑回归
不枯石20 小时前
Matlab通过GUI实现点云的最远点下采样(Farthest point sampling)
开发语言·图像处理·算法·计算机视觉·matlab
CappuccinoRose1 天前
MATLAB学习文档(二十一)
学习·matlab
川川菜鸟1 天前
Matlab调用GPT-5 API示例
开发语言·gpt·matlab
Lululaurel1 天前
一文详解回归分析的探索、分析、检验阶段,以Stata和SPSS为例
数据挖掘·数据分析·回归·统计
不枯石1 天前
Matlab通过GUI实现点云的随机(Random)下采样(附最简版)
图像处理·计算机视觉·matlab
悟乙己2 天前
机器学习常见的分类与回归模型目标变量系统性设计与实践(一)
机器学习·分类·回归
九章云极AladdinEdu2 天前
集成学习智慧:为什么Bagging(随机森林)和Boosting(XGBoost)效果那么好?
人工智能·随机森林·机器学习·强化学习·集成学习·boosting·ai研究