深入spaCy: 高级教程

在我们的初级和中级spaCy教程中,我们已经覆盖了一些基本和中级的spaCy主题。在这篇文章中,我们将深入探讨spaCy的高级主题,包括扩展属性、自定义词汇特性和处理管道。

一、扩展属性

spaCy允许为DocTokenSpan对象定义自定义属性。这些属性可以在处理管道中的不同步骤之间传递信息。下面是一个示例,它定义了一个新的Token属性is_fruit,该属性检查token的文本是否在给定的水果列表中:

python 复制代码
from spacy.tokens import Token

# Add the property
Token.set_extension("is_fruit", getter=lambda token: token.text in ("apple", "banana", "cherry"))

# Process some text
nlp = spacy.load("en_core_web_sm")
doc = nlp("I have an apple.")

# Check the custom attribute
print([(token.text, token._.is_fruit) for token in doc])

二、自定义词汇特性

除了自定义属性,spaCy还允许您添加自定义词汇特性。这些特性与词汇表中的条目关联,可以在整个应用程序中访问。以下示例向词汇表添加了一个is_fruit特性:

python 复制代码
from spacy.tokens import Doc
from spacy.vocab import Vocab

# Define the getter function
def get_is_fruit(word):
    return word.text in ("apple", "banana", "cherry")

# Add the property
Vocab.set_extension("is_fruit", getter=get_is_fruit)

# Process some text
nlp = spacy.load("en_core_web_sm")
doc = nlp("I have an apple.")

# Check the custom attribute
print([(token.text, token.vocab._.is_fruit(token)) for token in doc])

三、处理管道

spaCy的处理管道是一个由各种处理步骤组成的序列,这些步骤按照定义的顺序执行。你可以添加自己的步骤到管道中,并且可以控制它们的顺序。

以下代码定义了一个新的处理步骤,它将每个处理的文档的长度打印到控制台:

python 复制代码
def print_length(doc):
    print("Document length:", len(doc))
    return doc

nlp = spacy.load("en_core_web_sm")

# Add the component first in the pipeline
nlp.add_pipe(print_length, first=True)

doc = nlp("This is a sentence.")

在这个高级教程中,我们深入了解了spaCy的一些高级功能,包括扩展属性、自定义词汇特性和处理管道。这些功能使得spaCy更加灵活,能够适应各种各样的NLP任务和工作流程。

相关推荐
奔跑吧邓邓子24 分钟前
【Python爬虫(12)】正则表达式:Python爬虫的进阶利刃
爬虫·python·正则表达式·进阶·高级
码界筑梦坊1 小时前
基于Flask的京东商品信息可视化分析系统的设计与实现
大数据·python·信息可视化·flask·毕业设计
pianmian11 小时前
python绘图之箱型图
python·信息可视化·数据分析
csbDD1 小时前
2025年网络安全(黑客技术)三个月自学手册
linux·网络·python·安全·web安全
赔罪3 小时前
Python 高级特性-切片
开发语言·python
Asthenia04123 小时前
浏览器缓存机制深度解析:电商场景下的性能优化实践
后端
伊一大数据&人工智能学习日志3 小时前
selenium爬取苏宁易购平台某产品的评论
爬虫·python·selenium·测试工具·网络爬虫
说是用户昵称已存在3 小时前
Pycharm+CodeGPT+Ollama+Deepseek
ide·python·ai·pycharm
Fansv5874 小时前
深度学习-2.机械学习基础
人工智能·经验分享·python·深度学习·算法·机器学习
wang_yb4 小时前
『Python底层原理』--Python对象系统探秘
python·databook