2023年最新智能优化算法之——切诺贝利灾难优化器 (CDO),附MATLAB代码和文献

切诺贝利灾难优化器Chernobyl Disaster Optimizer (CDO)是H. Shehadeh于2023年提出的新型智能优化算法。该方法是受到切尔诺贝利核反应堆堆芯爆炸而来的启发。在CDO方法中,放射性的发生是由于核的不稳定性,核爆炸会发出不同类型的辐射。这些辐射中最常见的种类被称为伽马、贝塔和阿尔法粒子。算法主要围绕三种粒子的更新方式展开。

01

经作者查阅文献发现,该方法其实与灰狼算法有很大的相似性,大家可以作为参考。在CEC2005函数中结果展示:

properties 复制代码
% CDO函数,该算法与灰狼算法很像
function [Alpha_score,Alpha_pos,Convergence_curve]=CDO(SearchAgents_no,Max_iter,lb,ub,dim,fobj)
 
% initialize alpha, beta, and gamma particle positions (search radiations (Agents)) 
Alpha_pos=zeros(1,dim);
Alpha_score=inf; %change this to -inf for maximization problems
 
Beta_pos=zeros(1,dim);
Beta_score=inf; %change this to -inf for maximization problems
 
Gamma_pos=zeros(1,dim);
Gamma_score=inf; %change this to -inf for maximization problems
 
%Initialize the positions of search radiations (Agents)
Positions=initialization(SearchAgents_no,dim,ub,lb);
 
Convergence_curve=zeros(1,Max_iter);
 
l=0;% Loop counter
 
% Main loop
while l<Max_iter
    for i=1:size(Positions,1)  
        
       % Return back the search radiations (Agents) that go beyond the boundaries of the search space
        Flag4ub=Positions(i,:)>ub;
        Flag4lb=Positions(i,:)<lb;
        Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;               
        
        % Calculate objective function for each search radiations (Agents)
        fitness=fobj(Positions(i,:));
        
        % Update Alpha, Beta, and Gamma - search radiations (Agents)
       if fitness<Alpha_score 
          Alpha_score=fitness; % Update alpha
          Alpha_pos=Positions(i,:);
        end
        
        if fitness>Alpha_score && fitness<Beta_score 
            Beta_score=fitness; % Update beta
            Beta_pos=Positions(i,:);
        end
        
        if fitness>Alpha_score && fitness>Beta_score && fitness<Gamma_score 
            Gamma_score=fitness; % Update gamma
            Gamma_pos=Positions(i,:);
        end
      
    end
    
    a=3-l*((3)/Max_iter); % a decreases linearly from 3 to 0 Equation(9)
    
    a1 = ((log10((16000-1)*rand(1,1)+16000)));
    a2 = ((log10((270000-1)*rand(1,1)+270000)));
    a3 = ((log10((300000-1)*rand(1,1)+300000)));  
            
            
    % Update the Position of search radiations (Agents)
    for i=1:size(Positions,1)
        for j=1:size(Positions,2)     
             
            %------------------- alpha------------------------------           
 
            r1=rand(); % r1 is a random number in [0,1]
            r2=rand(); % r2 is a random number in [0,1]
            pa=pi*r1*r1/(0.25*a1)- a*rand() ; % Equation (23)
            C1=r2*r2*pi; 
            
            D_alpha=abs(C1*Alpha_pos(j)-Positions(i,j)); 
            va=0.25*(Alpha_pos(j)-pa*D_alpha); % Equation (22)
            
            %------------------- Beta------------------------------           
            r1=rand();
            r2=rand();
            pb=pi*r1*r1/(0.5*a2)- a*rand()  ; % Equation (17)
            C2=r2*r2*pi; 
            
            D_beta=abs(C2*Beta_pos(j)-Positions(i,j)); 
            vb=0.5*(Beta_pos(j)-pb*D_beta); % Equation (16)      
            
           %------------------- Gamma ------------------------------           
 
            r1=rand();
            r2=rand(); 
            py=(pi*r1*r1)/a3- a*rand() ; % Equation (11)
            C3=r2*r2*pi; 
            
            D_gamma=abs(C3*Gamma_pos(j)-Positions(i,j));
            vy=Gamma_pos(j)-py*D_gamma; % Equation (10)             
            Positions(i,j)=(va+vb+vy)/3;% Equation (28)
            
        end
    end
    l=l+1;    
    Convergence_curve(l)=Alpha_score;
end

03

参考文献

[1]H. Shehadeh.Chernobyl Disaster Optimizer (CDO): A Novel Metaheuristic Method for Global Optimization, Neural Computing and Applications. DOI: https://dx.doi.org/10.1007/s00521-023-08261-1

04代码获取方式:后台回复关键词:2023

免费获取2023年智能优化算法合集matlab代码

相关推荐
小爬菜7 分钟前
Django学习笔记(项目默认文件)-02
前端·数据库·笔记·python·学习·django
<但凡.10 分钟前
题海拾贝:力扣 138.随机链表的复制
数据结构·算法·leetcode
장숙혜10 分钟前
JavaScript正则表达式解析:模式、方法与实战案例
开发语言·javascript·正则表达式
安大小万27 分钟前
C++ 学习:深入理解 Linux 系统中的冯诺依曼架构
linux·开发语言·c++
随心Coding31 分钟前
【零基础入门Go语言】错误处理:如何更优雅地处理程序异常和错误
开发语言·后端·golang
T.Ree.36 分钟前
C语言_自定义类型(结构体,枚举,联合)
c语言·开发语言
Channing Lewis37 分钟前
python生成随机字符串
服务器·开发语言·python
田梓燊42 分钟前
图论 八字码
c++·算法·图论