【夜深人静学习数据结构与算法 | 第十二篇】动态规划——背包问题

目录

前言:

01背包问题:

二维数组思路:

一维数组思路:

总结:


前言:

在前面我们学习动态规划理论知识的时候,我就讲过要介绍一下背包问题,那么今天我们就来讲解一下背包问题。

在这里我们只介绍01背包,至于分组背包和混合背包这种的已经属于竞赛级别的了,难度过高,我们在这里就不学习了。

【夜深人静学数据结构与算法 | 第十篇】动态规划_我是一盘牛肉的博客-CSDN博客

01背包问题:

该问题的背景是一个背包和一组物品,每个物品都有自己的价值和重量。目标是选择一些物品放入背包中,使得放入的物品总重量不超过背包的容量,且总价值最大化。

具体来说,给定 n 个物品,其重量分别为 w1, w2, ..., wn,价值分别为 v1, v2, ..., vn,以及一个背包的容量 W。如何在不超过背包容量的情况下拿到的物品可以实现价值最大?

我们还是严格按照动态规划五步走来确定解题思路:

二维数组思路:

1.dp数组的含义以及下标的含义:dp[i][j]的含义为把[0,i]的物品放到容量为j的背包里 的最大价值。

  • 如果不放当前第 i 个物品,那么此时的最大价值就是 dp[ i-1] [ j ]
  • 如果放当前第 i 个物品,那么此时的最大价值就是 dp [ i-1 ][ j-weight[i]] + value[i]

2.递推公式的推导:dp[i][j]= max(dp[ i-1] [ j ],dp [ i-1 ][ j-weight[i]] + value[i])

3.dp数组的初始化:对于dp数组应该如何初始化,我们可以用画图的方式来表示一下dp数组

如果此时我们动态规划到红色的这块区域,由dp数组的公式 dp[i][j]= max(dp[i-1 ] [ j ],dp [i-1 ][j-weight[i] ] + value[i])我们可以知道,这块红色的区域的值一定是由整个数组的左上角区域慢慢推过来的。因此在开始我们就要把左上角的全部初始化,防止出现减不了的情况:

而具体的初始化值,我们简单想一想就可以知道,当背包容量为0的时候,就装不了东西,那么最大价值就是0,那么我们就把竖行的值初始化为0,也就是dp[i][0]初始化为0,横行就是始终装物品0,那么只要背包的容量大于物品0的容量,最大的价值就是dp[0][j]=value.(物品0)。

4.dp数组遍历顺序:对于二维数组的这两个for循环,无论是先便利背包还是物品都是可以的。

那么用一个例子来实现一下动态规划:

cpp 复制代码
#include <iostream>
#include <vector>

using namespace std;

// 定义物品结构体,包含重量和价值
struct Item {
    int weight;
    int value;
};

int knapsack(int W, vector<Item>& items) {
      int size = items.size();
      vector<vector<int>> dp(n + 1, vector<int>(W + 1, 0));

    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= W; j++) {
            // 当前物品重量大于背包容量,无法放入背包
            if (items[i - 1].weight > j) {
                dp[i][j] = dp[i - 1][j];
            }
            else {
                // 考虑放入或不放入当前物品的两种情况,取最大值
                dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - items[i - 1].weight] + items[i - 1].value);
            }
        }
    }

    return dp[n][W]; // 返回最优解
}

int main() {
    int W = 10; // 背包容量

    vector<Item> items = { {2, 6}, {2, 10}, {3, 12} }; // 物品列表

    int maxValue = knapsack(W, items); // 求解最优解

    cout << "最大总价值为: " << maxValue << endl;

    return 0;
}

一维数组思路:

在一维数组优化中,我们只需要创建一个长度为背包容量+1的一维数组,用于记录在不超过当前背包容量下的最优解。具体优化过程如下:

原始的二维dp数组定义为dp[n + 1][W + 1],其中dp[i][j]表示在前i个物品中选择不超过重量j的物品时的最优解。

将二维dp数组优化为一维数组dp[W + 1],其中dp[j]表示在不超过背包容量j的情况下的最优解。

优化后的代码示例:

cpp 复制代码
#include <iostream>
#include <vector>

using namespace std;

// 定义物品结构体,包含重量和价值
struct Item {
    int weight;
    int value;
};

int knapsack(int W, vector<Item>& items) {
    int n = items.size();

    // 创建一维dp数组并初始化为0
    vector<int> dp(W + 1, 0);

    for (int i = 0; i < n; i++) {
        for (int j = W; j >= items[i].weight; j--) {
            // 考虑放入或不放入当前物品的两种情况,取最大值
            dp[j] = max(dp[j], dp[j - items[i].weight] + items[i].value);
        }
    }

    return dp[W]; // 返回最优解
}

int main() {
    int W = 10; // 背包容量

    vector<Item> items = { {2, 6}, {2, 10}, {3, 12} }; // 物品列表

    int maxValue = knapsack(W, items); // 求解最优解

    cout << "最大总价值为: " << maxValue << endl;

    return 0;
}

在上述代码中,我们使用一个长度为背包容量+1的一维数组dp[W + 1]来记录在不超过当前背包容量下的最优解。在计算时,我们从后往前遍历物品,并从后往前更新一维dp数组。这样可以确保在更新dp[j]时,所需的dp[j - items[i].weight]已经是前一轮的值,并且不会影响当前轮的计算结果。通过这种方式,可以实现将二维dp数组优化为一维数组的目的,并得到正确的最优解。

总结:

本文我们学习了01背包,其实我们可以发现动态规划题目还是有比较强的套路性的,我们把动态规划拆分成为了五部,我们只要按照这五步进行,实际上解决动态规划题目还是很简单的。

如果我的内容对你有帮助,请点赞,评论,收藏。创作不易,大家的支持就是我坚持下去的动力!

相关推荐
EterNity_TiMe_2 分钟前
【论文复现】(CLIP)文本也能和图像配对
python·学习·算法·性能优化·数据分析·clip
ifanatic10 分钟前
[面试]-golang基础面试题总结
面试·职场和发展·golang
机器学习之心13 分钟前
一区北方苍鹰算法优化+创新改进Transformer!NGO-Transformer-LSTM多变量回归预测
算法·lstm·transformer·北方苍鹰算法优化·多变量回归预测·ngo-transformer
yyt_cdeyyds24 分钟前
FIFO和LRU算法实现操作系统中主存管理
算法
alphaTao1 小时前
LeetCode 每日一题 2024/11/18-2024/11/24
算法·leetcode
kitesxian1 小时前
Leetcode448. 找到所有数组中消失的数字(HOT100)+Leetcode139. 单词拆分(HOT100)
数据结构·算法·leetcode
VertexGeek2 小时前
Rust学习(八):异常处理和宏编程:
学习·算法·rust
石小石Orz2 小时前
Three.js + AI:AI 算法生成 3D 萤火虫飞舞效果~
javascript·人工智能·算法
jiao_mrswang3 小时前
leetcode-18-四数之和
算法·leetcode·职场和发展
qystca3 小时前
洛谷 B3637 最长上升子序列 C语言 记忆化搜索->‘正序‘dp
c语言·开发语言·算法