【PyTorch】PyTorch、Cuda 的安装和使用

原文作者 :我辈李想
版权声明 :文章原创,转载时请务必加上原文超链接、作者信息和本声明。


文章目录


前言

PyTorch是一个开源的Python深度学习框架,可以用于构建各种类型的神经网络模型。

一、Anaconda 中安装 PyTorch 和 CUDA

  1. 首先下载并安装适用于您系统的 Anaconda 版本。

  2. 打开 Anaconda Prompt 或命令行工具,并创建一个名为"pytorch"或任何其他您喜欢的环境,此处假设您使用的是 Anaconda 4.5 或更高版本:

    conda create -n pytorch python=3.7 anaconda

  3. 激活新环境:

    conda activate pytorch

  4. 安装 PyTorch:

    conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c nvidia

此命令将安装适用于 CUDA 11.1 的 PyTorch 和 TorchVision,以及适用于 CUDA 11.1 的 CUDA 工具包。

  1. 验证 PyTorch 安装是否成功:

    python -c "import torch; print(torch.version)"

如果成功安装,这将打印 PyTorch 的版本号。

二、检查PyTorch和CUDA版本

可以使用以下命令:

python 复制代码
import torch

print(torch.__version__)
print(torch.version.cuda)

这将打印出您正在使用的PyTorch和CUDA版本。

三、PyTorch的基本使用

示例

PyTorch是一个开源的Python深度学习框架,可以用于构建各种类型的神经网络模型。要使用PyTorch,您需要首先安装它。可以使用以下命令在终端中安装PyTorch:

pip install torch

然后,您可以在Python脚本中导入PyTorch并开始使用它。例如,要构建一个简单的全连接神经网络,可以使用以下代码:

python 复制代码
import torch
import torch.nn as nn

# Define the neural network model
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(784, 256)
        self.fc2 = nn.Linear(256, 10)

    def forward(self, x):
        x = x.view(-1, 784)
        x = torch.relu(self.fc1(x))
        x = self.fc2(x)
        return x

# Instantiate the model and define the loss function and optimizer
net = Net()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(net.parameters(), lr=0.01)

# Load the data and train the model
for epoch in range(10):
    for i, (inputs, labels) in enumerate(train_loader, 0):
        optimizer.zero_grad()
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

# Evaluate the trained model on the test set
correct = 0
total = 0
with torch.no_grad():
    for inputs, labels in test_loader:
        outputs = net(inputs)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()
print('Accuracy: %d %%' % (100 * correct / total))

在这个例子中,我们定义了一个简单的全连接神经网络,使用MNIST数据集进行训练和测试。我们使用PyTorch内置的nn.Module类来定义神经网络模型,并在forward方法中定义正向传播的操作。我们使用交叉熵损失函数和随机梯度下降(SGD)优化器来训练模型。我们使用训练数据集中的数据来更新模型参数,并使用测试数据集来评估模型的准确性。

四、PyTorch调用cuda

在PyTorch中使用CUDA可以大大加速训练和推理过程。以下是使用CUDA的几个步骤:

  1. 检查CUDA是否可用:

    import torch

    if torch.cuda.is_available():
    device = torch.device("cuda") # 如果GPU可用,则使用CUDA
    else:
    device = torch.device("cpu") # 如果GPU不可用,则使用CPU

  2. 将模型和数据加载到CUDA设备:

    model.to(device)
    inputs, labels = inputs.to(device), labels.to(device)

  3. 将数据转换为CUDA张量:

    inputs = inputs.cuda()
    labels = labels.cuda()

  4. 在训练过程中,使用CUDA加速计算:

    for inputs, labels in dataloader:
    inputs, labels = inputs.to(device), labels.to(device)
    optimizer.zero_grad()
    outputs = model(inputs)
    loss = criterion(outputs, labels)
    loss.backward()
    optimizer.step()

请注意,在使用CUDA时,您需要确保您的计算机具有兼容的GPU和正确的CUDA和cuDNN版本。您可以在PyTorch的官方文档中找到更多详细信息。

五、Matplotlib绘制Pytorch损失函数和准确率

在Pytorch中,我们可以使用Matplotlib来绘制训练过程中的损失函数曲线、准确率曲线等。下面是一个简单的示例:

python 复制代码
import matplotlib.pyplot as plt

# 定义损失函数和准确率列表
train_losses = [0.1, 0.08, 0.05, 0.03, 0.02]
train_accs = [90, 92, 95, 97, 98]

# 绘制损失函数曲线
plt.plot(train_losses, label='Train Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.show()

# 绘制准确率曲线
plt.plot(train_accs, label='Train Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
plt.show()

运行后会分别显示训练过程中的损失函数曲线和准确率曲线。我们可以根据自己的需要调整图表的样式和参数,例如修改线条颜色、线条宽度、坐标轴范围等。

六、tesorbrand显示图像

PyTorch下的Tensorboard 使用

七、用Pytorch写一个卷积神经网络

下面是一个简单的卷积神经网络(CNN)的实现,用PyTorch框架来训练MNIST手写数字识别数据集。

首先,您需要导入所需的库和模块,如下所示:

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torchvision import datasets, transforms

接下来,您需要定义网络的架构。这个CNN有两个卷积层,一个最大池化层和两个全连接层。代码如下:

python 复制代码
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        # 输入为28*28*1
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        # 输入为24*24*10
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        # 输入为20*20*20
        self.mp = nn.MaxPool2d(2)
        # 输入为10*10*20
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

    def forward(self, x):
        x = F.relu(self.mp(self.conv1(x)))
        x = F.relu(self.mp(self.conv2(x)))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)

现在,您需要定义训练函数和测试函数。训练函数将会用来训练模型,而测试函数将会用来测试模型。代码如下:

python 复制代码
def train(model, device, train_loader, optimizer, epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % 100 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))


def test(model, device, test_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            test_loss += F.nll_loss(output, target, reduction='sum').item()
            pred = output.argmax(dim=1, keepdim=True)
            correct += pred.eq(target.view_as(pred)).sum().item()

    test_loss /= len(test_loader.dataset)

    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))

接下来,您需要加载数据集和定义训练和测试参数。代码如下:

python 复制代码
batch_size = 64

train_transforms = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307,), (0.3081,))
])

test_transforms = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307,), (0.3081,))
])

train_dataset = datasets.MNIST('./data', train=True, download=True, transform=train_transforms)
test_dataset = datasets.MNIST('./data', train=False, transform=test_transforms)

train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")

model = Net().to(device)
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)

最后,您需要在循环中训练和测试模型。代码如下:

python 复制代码
epochs = 10

for epoch in range(1, epochs + 1):
    train(model, device, train_loader, optimizer, epoch)
    test(model, device, test_loader)

这是一个简单的CNN的实现,用PyTorch训练MNIST数据集。您可以调整模型的超参数,例如学习率、动量等,来提高模型的准确性和性能。

八、用Pytorch写一个目标检测模型

下面是一个基于PyTorch的目标检测模型的实现,使用Faster R-CNN网络,并使用COCO数据集进行训练和测试。

首先,您需要导入所需的库和模块,如下所示:

python 复制代码
import torch
import torchvision
import torchvision.transforms as transforms
import torch.utils.data
import numpy as np
import matplotlib.pyplot as plt
import time
import os
import json
import torch.utils.data as data
from torchvision.datasets import CocoDetection
import torchvision.transforms.functional as F
import torch.nn as nn
import torch.optim as optim
from torchvision.models.detection import FasterRCNN
from torchvision.models.detection.rpn import AnchorGenerator
from torchvision.models.detection.backbone_utils import resnet_fpn_backbone
from torchvision.ops import MultiScaleRoIAlign

接下来,您需要定义数据转换和数据集类,以加载和预处理COCO数据集。代码如下:

python 复制代码
class Compose(object):
    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, img, target):
        for t in self.transforms:
            img, target = t(img, target)
        return img, target


class RandomHorizontalFlip(object):
    def __init__(self, probability=0.5):
        self.probability = probability

    def __call__(self, img, target):
        if np.random.rand() < self.probability:
            img = F.hflip(img)
            target["boxes"][:, [0, 2]] = img.width - target["boxes"][:, [2, 0]]
        return img, target


class Resize(object):
    def __init__(self, max_size=900, min_size=600):
        self.max_size = max_size
        self.min_size = min_size

    def __call__(self, img, target):
        w, h = img.size
        size = self.min_size
        if w < h and max(h, w * size / w) <= self.max_size:
            size = int(w * size / w)
        elif max(h, w * size / h) <= self.max_size:
            size = int(h * size / h)

        img = F.resize(img, (size, size))

        target["boxes"][:, :4] *= size / self.min_size

        return img, target


class ToTensor(object):
    def __call__(self, img, target):
        img = F.to_tensor(img)
        return img, target


class COCODataset(data.Dataset):
    def __init__(self, data_dir, set_name='train', transform=None):
        super().__init__()
        self.data_dir = data_dir
        self.images_dir = os.path.join(data_dir, set_name)
        self.set_name = set_name
        self.transform = transform

        self.coco = CocoDetection(self.images_dir, os.path.join(data_dir, f'{set_name}.json'))

    def __getitem__(self, index):
        image, target = self.coco[index]
        image_id = self.coco.ids[index]

        if self.transform is not None:
            image, target = self.transform(image, target)

        return image, target, image_id

    def __len__(self):
        return len(self.coco)

接下来,您需要定义模型的架构。这个Faster R-CNN网络使用ResNet-50 FPN作为骨干网络。代码如下:

python 复制代码
class FasterRCNNResNetFPN(nn.Module):
    def __init__(self, num_classes):
        super(FasterRCNNResNetFPN, self).__init__()

        self.num_classes = num_classes

        backbone = resnet_fpn_backbone('resnet50', pretrained=True)
        anchor_generator = AnchorGenerator(sizes=((32, 64, 128, 256, 512),),
                                            aspect_ratios=((0.5, 1.0, 2.0),))
        roi_pooler = MultiScaleRoIAlign(featmap_names=['0', '1', '2', '3'],
                                        output_size=7,
                                        sampling_ratio=2)

        self.model = FasterRCNN(backbone,
                                num_classes=num_classes + 1,
                                rpn_anchor_generator=anchor_generator,
                                box_roi_pool=roi_pooler)

    def forward(self, x, targets=None):
        if self.training and targets is None:
            raise ValueError("In training mode, targets should be passed")
        elif not self.training and targets is not None:
            raise ValueError("In inference mode, targets should not be passed")
        else:
            return self.model(x, targets)

现在,您需要设置训练和测试的超参数并进行模型训练。代码如下:

python 复制代码
batch_size = 2
num_workers = 2
num_epochs = 10

data_dir = '/path/to/coco'

train_transforms = Compose([Resize(min_size=600, max_size=900),
                            RandomHorizontalFlip(),
                            ToTensor()])
test_transforms = Compose([Resize(min_size=800, max_size=1333),
                           ToTensor()])

train_dataset = COCODataset(data_dir, set_name='train', transform=train_transforms)
test_dataset = COCODataset(data_dir, set_name='val', transform=test_transforms)

train_loader = data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers, collate_fn=lambda x: tuple(zip(*x)))
test_loader = data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers, collate_fn=lambda x: tuple(zip(*x)))

num_classes = 80

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

model = FasterRCNNResNetFPN(num_classes=num_classes).to(device)

optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=0.0005)

def train_one_epoch(model, optimizer, data_loader, device, epoch):
    model.train()
    train_loss = 0.0
    start_time = time.time()
    for step, (images, targets, image_ids) in enumerate(data_loader):
        images = [img.to(device) for img in images]
        targets = [{k: v.to(device) for k, v in t.items()} for t in targets]

        loss_dict = model(images, targets)

        losses = sum(loss_dict.values())
        train_loss += losses.item()

        optimizer.zero_grad()
        losses.backward()
        optimizer.step()

        if step % 10 == 0:
            print(f'Epoch: [{epoch}/{num_epochs}] Step: [{step}/{len(data_loader)}] Loss: {losses.item()}')

    train_loss /= len(data_loader)
    end_time = time.time()
    print(f'Training Loss: {train_loss} Time: {end_time - start_time}')

def evaluate(model, data_loader, device):
    model.eval()
    results = []
    for images, targets, image_ids in data_loader:
        images = [img.to(device) for img in images]
        targets = [{k: v.to(device) for k, v in t.items()} for t in targets]

        with torch.no_grad():
            outputs = model(images)

        for i, (output, target) in enumerate(zip(outputs, targets)):
            result = {
                'image_id': image_ids[i],
                'boxes': output['boxes'].detach().cpu().numpy(),
                'scores': output['scores'].detach().cpu().numpy(),
                'labels': output['labels'].detach().cpu().numpy(),
            }
            target = {
                'image_id': image_ids[i],
                'boxes': target['boxes'].cpu().numpy(),
                'labels': target['labels'].cpu().numpy(),
            }
            results.append((result, target))

    return results

for epoch in range(num_epochs):
    train_one_epoch(model, optimizer, train_loader, device, epoch)
    results = evaluate(model, test_loader, device)

这是一个使用PyTorch实现的目标检测模型的示例,使用Faster R-CNN网络和COCO数据集进行训练和测试。您可以根据需要调整模型的超参数,以提高模型的准确性和性能。

相关推荐
阿俊仔(摸鱼版)15 分钟前
Python 常用运维模块之OS模块篇
运维·开发语言·python·云服务器
lly_csdn1231 小时前
【Image Captioning】DynRefer
python·深度学习·ai·图像分类·多模态·字幕生成·属性识别
速融云1 小时前
汽车制造行业案例 | 发动机在制造品管理全解析(附解决方案模板)
大数据·人工智能·自动化·汽车·制造
西猫雷婶1 小时前
python学opencv|读取图像(四十一 )使用cv2.add()函数实现各个像素点BGR叠加
开发语言·python·opencv
金融OG1 小时前
99.11 金融难点通俗解释:净资产收益率(ROE)VS投资资本回报率(ROIC)VS总资产收益率(ROA)
大数据·python·算法·机器学习·金融
AI明说2 小时前
什么是稀疏 MoE?Doubao-1.5-pro 如何以少胜多?
人工智能·大模型·moe·豆包
XianxinMao2 小时前
重构开源LLM分类:从二分到三分的转变
人工智能·语言模型·开源
Elastic 中国社区官方博客2 小时前
使用 Elasticsearch 导航检索增强生成图表
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
小唐C++2 小时前
C++小病毒-1.0勒索
开发语言·c++·vscode·python·算法·c#·编辑器
云天徽上3 小时前
【数据可视化】全国星巴克门店可视化
人工智能·机器学习·信息可视化·数据挖掘·数据分析