计算机视觉与图形学-神经渲染专题-Seal-3D(基于NeRF的像素级交互式编辑)

摘要

随着隐式神经表示或神经辐射场 (NeRF) 的流行,迫切需要与隐式 3D 模型交互的编辑方法,以完成后处理重建场景和 3D 内容创建等任务。虽然之前的作品从不同角度探索了 NeRF 编辑,但它们在编辑灵活性、质量和速度方面受到限制,无法提供直接的编辑响应和即时预览。关键的挑战是构思一种本地可编辑的神经表示,它可以直接反映编辑指令并立即更新。为了弥补这一差距,我们提出了一种新的隐式表示交互式编辑方法和系统,称为 Seal-3D,它允许用户以像素级和自由的方式编辑 NeRF 模型 ,并具有广泛的类 NeRF 主干网,并预览 立即编辑效果。为了实现这些效果,我们提出的代理函数将编辑指令映射到 NeRF 模型的原始空间 ,以及具有局部预训练和全局微调的student-teacher训练策略来解决这些挑战。NeRF 编辑系统旨在展示各种编辑类型。我们的系统可以以约1秒的交互速度实现引人注目的编辑效果。

工程链接:https://windingwind.github.io/seal-3d/

框架

左图:用户编辑后目标空间的 3D 点和视图方向映射到原始源空间,以从教师模型获取指导 ct、σt 以进行学生训练。右图:学生训练由两个阶段组成:快速预训练,通过局部损失更新网络的部分参数来提供即时预览,以及全局损失的微调。

实验结果

第一个交互式像素级 NeRF 编辑工具。我们设计了一种交互式用户编辑方法和系统 Seal-3D,通过我们新颖的预训练策略实现了即时(约 1 秒)预览(左)。通过短时间(1~2分钟)的微调,可以进一步获得高质量的编辑结果。我们实施编辑的编辑结果工具(右)与原始表面(左)上丰富的阴影细节(例如阴影)在视图上保持一致。

3D内容编辑

结论

我们引入了一个用于神经辐射场像素级编辑的交互式框架,支持即时预览。具体来说,我们利用student-teacher蒸馏方法提供编辑指导,并设计两阶段训练策略来实现网络即时收敛,以获得粗略结果作为预览。与以前的工作不同,我们的方法不需要任何显式代理(例如网格),从而提高了交互性和用户友好性。我们的方法还支持在编辑的表面上保留着色效果。一个限制是我们的方法不支持复杂的依赖于视图的照明效果,例如镜面反射,并且不能改变场景照明,这可以通过引入内在合成来改进。此外,我们的方法不处理原始 NeRF 网络的重建失败(例如浮动伪影)。

相关推荐
木枷1 小时前
NAS-Bench-101: Towards Reproducible Neural Architecture Search
人工智能·物联网
BAOYUCompany1 小时前
暴雨服务器更懂人工智能+
运维·服务器·人工智能
飞哥数智坊1 小时前
Coze实战第17讲:工资条自动拆分+一对一邮件发送
人工智能·coze
cwn_1 小时前
自然语言处理NLP (1)
人工智能·深度学习·机器学习·自然语言处理
点云SLAM2 小时前
PyTorch中flatten()函数详解以及与view()和 reshape()的对比和实战代码示例
人工智能·pytorch·python·计算机视觉·3d深度学习·张量flatten操作·张量数据结构
智海观潮2 小时前
Unity Catalog与Apache Iceberg如何重塑Data+AI时代的企业数据架构
大数据·人工智能·ai·iceberg·catalog
爱分享的飘哥2 小时前
第三篇:VAE架构详解与PyTorch实现:从零构建AI的“视觉压缩引擎”
人工智能·pytorch·python·aigc·教程·生成模型·代码实战
柏峰电子3 小时前
市政道路积水监测系统:守护城市雨天出行安全的 “智慧防线”
大数据·人工智能·安全
蓑雨春归3 小时前
自主智能Agent如何重塑工作流自动化:技术、经济与未来展望
人工智能·chatgpt·自动化
哈密瓜Q3 小时前
计算机视觉-图像基础处理
人工智能·计算机视觉