计算机视觉与图形学-神经渲染专题-Seal-3D(基于NeRF的像素级交互式编辑)

摘要

随着隐式神经表示或神经辐射场 (NeRF) 的流行,迫切需要与隐式 3D 模型交互的编辑方法,以完成后处理重建场景和 3D 内容创建等任务。虽然之前的作品从不同角度探索了 NeRF 编辑,但它们在编辑灵活性、质量和速度方面受到限制,无法提供直接的编辑响应和即时预览。关键的挑战是构思一种本地可编辑的神经表示,它可以直接反映编辑指令并立即更新。为了弥补这一差距,我们提出了一种新的隐式表示交互式编辑方法和系统,称为 Seal-3D,它允许用户以像素级和自由的方式编辑 NeRF 模型 ,并具有广泛的类 NeRF 主干网,并预览 立即编辑效果。为了实现这些效果,我们提出的代理函数将编辑指令映射到 NeRF 模型的原始空间 ,以及具有局部预训练和全局微调的student-teacher训练策略来解决这些挑战。NeRF 编辑系统旨在展示各种编辑类型。我们的系统可以以约1秒的交互速度实现引人注目的编辑效果。

工程链接:https://windingwind.github.io/seal-3d/

框架

左图:用户编辑后目标空间的 3D 点和视图方向映射到原始源空间,以从教师模型获取指导 ct、σt 以进行学生训练。右图:学生训练由两个阶段组成:快速预训练,通过局部损失更新网络的部分参数来提供即时预览,以及全局损失的微调。

实验结果

第一个交互式像素级 NeRF 编辑工具。我们设计了一种交互式用户编辑方法和系统 Seal-3D,通过我们新颖的预训练策略实现了即时(约 1 秒)预览(左)。通过短时间(1~2分钟)的微调,可以进一步获得高质量的编辑结果。我们实施编辑的编辑结果工具(右)与原始表面(左)上丰富的阴影细节(例如阴影)在视图上保持一致。

3D内容编辑

结论

我们引入了一个用于神经辐射场像素级编辑的交互式框架,支持即时预览。具体来说,我们利用student-teacher蒸馏方法提供编辑指导,并设计两阶段训练策略来实现网络即时收敛,以获得粗略结果作为预览。与以前的工作不同,我们的方法不需要任何显式代理(例如网格),从而提高了交互性和用户友好性。我们的方法还支持在编辑的表面上保留着色效果。一个限制是我们的方法不支持复杂的依赖于视图的照明效果,例如镜面反射,并且不能改变场景照明,这可以通过引入内在合成来改进。此外,我们的方法不处理原始 NeRF 网络的重建失败(例如浮动伪影)。

相关推荐
平头某1 小时前
产品经理的人工智能课 02 - 自然语言处理
人工智能·自然语言处理·产品经理
婷小主的保镖的学习日记8 小时前
一篇关于高等数理统计结合机器学习论文的撰写(如何撰写?)
人工智能·机器学习·概率论
玩AI的小胡子8 小时前
DeePseek结合PS!批量处理图片的方法教程
人工智能·aigc·deepseek·玩ai的小胡子
新加坡内哥谈技术8 小时前
OpenAI新商标申请曝光:AI硬件、机器人、量子计算全线布局?
人工智能·科技·深度学习·学习·语言模型
秉寒-CHO8 小时前
【3分钟极速部署】在本地快速部署deepseek
人工智能
云天徽上9 小时前
【机器学习案列】糖尿病风险可视化及预测
人工智能·机器学习·分类
计算机软件程序设计9 小时前
结合深度学习、自然语言处理(NLP)与多准则决策的三阶段技术框架,旨在实现从消费者情感分析到个性化决策
人工智能·深度学习·自然语言处理
金智维科技官方9 小时前
AI驱动的智能流程自动化是什么
人工智能·自动化
遇健李的幸运9 小时前
DeepSeek-R1 技术全景解析:从原理到实践的“炼金术配方” ——附多阶段训练流程图与核心误区澄清
人工智能