DP-GAN剩余代码

在前面计算完损失后,该进行更新:

1:netEMA是模型的生成器:

遍历生成器的state_dict,将每一个键对应的值乘以EMA_decay。

接着根据当前迭代步数计算num_upd,每1000,2500,10000代倍数就执行一次。

当num_upd大于50就跳出更新EMA。

接着对图片进行上色:

python 复制代码
    def visualize_batch(self, model, image, label, cur_iter):
        self.save_images(label, "label", cur_iter, is_label=True)
        self.save_images(image, "real", cur_iter)
        with torch.no_grad():
            model.eval()
            fake = model.netG(label)
            self.save_images(fake, "fake", cur_iter)
            model.train()
            if not self.opt.no_EMA:
                model.eval()
                fake = model.netEMA(label)
                self.save_images(fake, "fake_ema", cur_iter)
                model.train()

首先对标签进行上色:

label即batch是经过one-hot编码后的标签大小为(5,35,256,512)。

接着len(batch)=5,取第一个batch对应的tensor。

进行上色:

首先获得camp:

生成的colormap包含空像素和噪声,一共有36个类别,所以执行else语句。

首先生成一个全为0的列表,大小为(36,3)--->接着遍历每个类别,初始化r=g=b=0--->id = 1--->接着遍历7次,首先将id转换为二进制类型。

python 复制代码
def uint82bin(n, count=8):
    """returns the binary of integer n, count refers to amount of bits"""
    return ''.join([str((n >> y) & 1) for y in range(count - 1, -1, -1)])
#y = 7,6,5,4,3,2,1,0

y分别取值为7,6,5,4,3,2,1,0。

将n右移位7位,n为1,则移位后为0,分别移位,只有当y等于0时,不移位,n才为1.最后返回一个字符串'00000001'.
移位操作

分别取str_id的倒数1,2,3位。然后将1,0,0分别左移七位,1左移后变为二进制为1000 0000即128.0左移后还是0,所以r=128,g=b=0.

最后id=1右移3位,变为0.

在j循环里执行8次,则下一次id=0.在uint82bin函数中,0不管位移多少次都为0,且0&1=0,所以最后输出'00000000'.

则r = 128^(0)=128.

因为128=(10000000),0=(00000000),(1异或0=1),(0异或0=0),所以128^(0)=128。这样执行7次后,将r填充为第一行第一列,g填充为第一行第二列,b填充为第一行第三列。这样执行for循环36次,则camp就会被重新填充一遍。

将camp转换为tensor。生成一个由0填充的(3,256,512)大小的size。同时对label的其中一个batch数据求类别。

tens大小由(35,256,512)变为(1,256,512)。

len(camp)=36,开始label=0时,tens[0]=(256,512),label==tens[0]会得到一个mask,其中tens中等于0的类别为True,不等于0的为false。

color_image[0]取得color_image第一层R通道,cmap[label][0]为第一行第一列即128,将mask对应的值全部替换为128.同理G和B通道也是这样处理。这样循环36次,将每一个类别都上色。最后输出经过填充的彩色图。

最后将label进行转置,方便cv2保存。

最后将batch剩余的四个图片也进行处理。将五张图放在一个图片上保存到指定位置。

下一步对image处理:


将tens小于0的设置为0,大于1的设置为1.再转置为(h,w,c)格式。

在eval时候,将label输入到生成器中,生成fake image,大小为(5,3,256,512)。将生成的fake image保存起来。

netEMA是对生成器的深拷贝。

下一步计算训练一个batch所需要的时间:

将epoch,总epoch,当前迭代,所花费的时间写到progress.txt文件中,并打印出来。


下一步:

通过控制latest,best来保存权重。

最重要看一下FID计算:比较麻烦,到时候重新开一章。

相关推荐
资源大全免费分享5 分钟前
清华大学第五版《DeepSeek与AI幻觉》附五版合集下载方法
人工智能
龚大龙18 分钟前
机器学习(李宏毅)——RL(强化学习)
人工智能·机器学习
LaughingZhu24 分钟前
PH热榜 | 2025-02-23
前端·人工智能·经验分享·搜索引擎·产品运营
java_heartLake1 小时前
基于deepseek的AI知识库系统搭建
人工智能·deepseek
阿里云云原生2 小时前
山石网科×阿里云通义灵码,开启研发“AI智造”新时代
网络·人工智能·阿里云·ai程序员·ai程序员体验官
diemeng11193 小时前
AI前端开发技能变革时代:效率与创新的新范式
前端·人工智能
有Li3 小时前
跨中心模型自适应牙齿分割|文献速递-医学影像人工智能进展
人工智能
牧歌悠悠8 小时前
【深度学习】Unet的基础介绍
人工智能·深度学习·u-net
坚毅不拔的柠檬柠檬8 小时前
AI革命下的多元生态:DeepSeek、ChatGPT、XAI、文心一言与通义千问的行业渗透与场景重构
人工智能·chatgpt·文心一言
坚毅不拔的柠檬柠檬8 小时前
2025:人工智能重构人类文明的新纪元
人工智能·重构