目录
[1 metrics-server](#1 metrics-server)
[2 指定内存请求和限制](#2 指定内存请求和限制)
[3 指定 CPU 请求和限制](#3 指定 CPU 请求和限制)
资源限制
在k8s中对于容器资源限制主要分为以下两类:
-
内存资源限制: 内存请求 (request)和内存限制(limit)分配给一个容器。 我们保障容器拥有它请求数量的内存,但不允许使用超过限制数量的内存。
- 官网参考地址: 为容器和 Pod 分配内存资源 | Kubernetes
-
CPU 资源限制: 为容器设置 CPU request(请求) 和 CPU limit(限制)。 容器使用的 CPU 不能超过所配置的限制。 如果系统有空闲的 CPU 时间,则可以保证给容器分配其所请求数量的 CPU 资源。
- 官网参考地址: 为容器和 Pods 分配 CPU 资源 | Kubernetes
请求 request memory cpu :可以使用的基础资源 100M
限制 limit memory cpu :可以使用的最大资源 200M 超过最大资源之后容器会被 kill , OOM 错误
1 metrics-server
Kubernetes Metrics Server (Kubernetes指标服务器),它是一个可扩展的、高效的容器资源度量源。Metrics Server 用于监控每个 Node 和 Pod 的负载(用于Kubernetes内置自动扩缩管道)。Metrics Server 从Kubelets 收集资源指标,并通过 Metrics API 在Kubernetes apiserver中公开,供 Horizontal Pod Autoscaler 和 Vertical Pod Autoscaler 使用。Metrics API 也可以通过 kubectl top 访问,使其更容易调试自动扩缩管道。
- 查看 metrics-server(或者其他资源指标 API
metrics.k8s.io
服务提供者)是否正在运行, 请键入以下命令:
bash
kubectl get apiservices
- 如果资源指标 API 可用,则会输出将包含一个对
metrics.k8s.io
的引用。
bash
NAME
v1beta1.metrics.k8s.io
-
安装 metrics-server
components.yaml
apiVersion: v1
kind: ServiceAccount
metadata:
labels:
k8s-app: metrics-server
name: metrics-server
namespace: kube-systemapiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
labels:
k8s-app: metrics-server
rbac.authorization.k8s.io/aggregate-to-admin: "true"
rbac.authorization.k8s.io/aggregate-to-edit: "true"
rbac.authorization.k8s.io/aggregate-to-view: "true"
name: system:aggregated-metrics-reader
rules:
- apiGroups:
- metrics.k8s.io
resources:
- pods
- nodes
verbs:
- get
- list
- watchapiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
labels:
k8s-app: metrics-server
name: system:metrics-server
rules:
- apiGroups:
- ""
resources:
- nodes/metrics
verbs:
- get
- apiGroups:
- ""
resources:
- pods
- nodes
verbs:
- get
- list
- watchapiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
labels:
k8s-app: metrics-server
name: metrics-server-auth-reader
namespace: kube-system
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: Role
name: extension-apiserver-authentication-reader
subjects:
- kind: ServiceAccount
name: metrics-server
namespace: kube-systemapiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
labels:
k8s-app: metrics-server
name: metrics-server:system:auth-delegator
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: system:auth-delegator
subjects:
- kind: ServiceAccount
name: metrics-server
namespace: kube-systemapiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
labels:
k8s-app: metrics-server
name: system:metrics-server
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: system:metrics-server
subjects:
- kind: ServiceAccount
name: metrics-server
namespace: kube-systemapiVersion: v1
kind: Service
metadata:
labels:
k8s-app: metrics-server
name: metrics-server
namespace: kube-system
spec:
ports:
- name: https
port: 443
protocol: TCP
targetPort: https
selector:
k8s-app: metrics-serverapiVersion: apps/v1
kind: Deployment
metadata:
labels:
k8s-app: metrics-server
name: metrics-server
namespace: kube-system
spec:
selector:
matchLabels:
k8s-app: metrics-server
strategy:
rollingUpdate:
maxUnavailable: 0
template:
metadata:
labels:
k8s-app: metrics-server
spec:
containers:
- args:
- --cert-dir=/tmp
- --secure-port=4443
- --kubelet-preferred-address-types=InternalIP,ExternalIP,Hostname
- --kubelet-use-node-status-port
- --metric-resolution=15s
- --kubelet-insecure-tls #修改去掉证书验证
image: dyrnq/metrics-server:v0.6.2 #修改官方无法下载
imagePullPolicy: IfNotPresent
livenessProbe:
failureThreshold: 3
httpGet:
path: /livez
port: https
scheme: HTTPS
periodSeconds: 10
name: metrics-server
ports:
- containerPort: 4443
name: https
protocol: TCP
readinessProbe:
failureThreshold: 3
httpGet:
path: /readyz
port: https
scheme: HTTPS
initialDelaySeconds: 20
periodSeconds: 10
resources:
requests:
cpu: 100m
memory: 200Mi
securityContext:
allowPrivilegeEscalation: false
readOnlyRootFilesystem: true
runAsNonRoot: true
runAsUser: 1000
volumeMounts:
- mountPath: /tmp
name: tmp-dir
hostNetwork: true #必须指定这个才行
nodeSelector:
kubernetes.io/os: linux
priorityClassName: system-cluster-critical
serviceAccountName: metrics-server
volumes:
- emptyDir: {}
name: tmp-dirapiVersion: apiregistration.k8s.io/v1
kind: APIService
metadata:
labels:
k8s-app: metrics-server
name: v1beta1.metrics.k8s.io
spec:
group: metrics.k8s.io
groupPriorityMinimum: 100
insecureSkipTLSVerify: true
service:
name: metrics-server
namespace: kube-system
version: v1beta1
versionPriority: 100
bash
$ kubectl appply -f components.yaml
2 指定内存请求和限制
官网: 为容器和 Pod 分配内存资源 | Kubernetes
为容器指定内存请求,请在容器资源清单中包含 resources:requests
字段。 同理,要指定内存限制,请包含 resources:limits
。
# nginx-memory-demo.yaml
#内存资源的基本单位是字节(byte)。你可以使用这些后缀之一,将内存表示为 纯整数或定点整数:E、P、T、G、M、K、Ei、Pi、Ti、Gi、Mi、Ki。 例如,下面是一些近似相同的值:128974848, 129e6, 129M, 123Mi
bash
apiVersion: v1
kind: Pod
metadata:
name: nginx-memory-demo
spec:
containers:
- name: nginx-memory-demo
image: nginx:1.19
resources:
requests:
memory: "100Mi"
limits:
memory: "200Mi"
查看容器内存使用情况
bash
$ kubectl get pod nginx-memory-demo --output=yaml
查看容器正在使用内存情况
bash
$ kubectl top pod nginx-memory-demo
-
内存请求和限制的目的
通过为集群中运行的容器配置内存请求和限制,你可以有效利用集群节点上可用的内存资源。 通过将 Pod 的内存请求保持在较低水平,你可以更好地安排 Pod 调度。 通过让内存限制大于内存请求,你可以完成两件事:
-
Pod 可以进行一些突发活动,从而更好的利用可用内存。
-
Pod 在突发活动期间,可使用的内存被限制为合理的数量。
-
-
没有指定内存限制
如果你没有为一个容器指定内存限制,则自动遵循以下情况之一:
-
容器可无限制地使用内存。容器可以使用其所在节点所有的可用内存, 进而可能导致该节点调用 OOM Killer。 此外,如果发生 OOM Kill,没有资源限制的容器将被杀掉的可行性更大。
-
运行的容器所在命名空间有默认的内存限制,那么该容器会被自动分配默认限制。
-
3 指定 CPU 请求和限制
官网: 为容器和 Pods 分配 CPU 资源 | Kubernetes
为容器指定 CPU 请求,请在容器资源清单中包含 resources: requests
字段。 要指定 CPU 限制,请包含 resources:limits
。
# nginx-cpu-demo.yaml
#CPU 资源以 CPU 单位度量。小数值是可以使用的。一个请求 0.5 CPU 的容器保证会获得请求 1 个 CPU 的容器的 CPU 的一半。 你可以使用后缀 m 表示毫。例如 100m CPU、100 milliCPU 和 0.1 CPU 都相同。 CPU 请求只能使用绝对数量,而不是相对数量。0.1 在单核、双核或 48 核计算机上的 CPU 数量值是一样的。
bash
apiVersion: v1
kind: Pod
metadata:
name: nginx-cpu-demo
spec:
containers:
- name: nginx-cpu-demo
image: nginx:1.19
resources:
limits:
cpu: "1"
requests:
cpu: "0.5"
- 显示 pod 详细信息
bash
$ kubectl get pod nginx-cpu-demo --output=yaml
- 显示 pod 运行指标
bash
$ kubectl top pod nginx-cpu-demo
-
CPU 请求和限制的初衷
通过配置你的集群中运行的容器的 CPU 请求和限制,你可以有效利用集群上可用的 CPU 资源。 通过将 Pod CPU 请求保持在较低水平,可以使 Pod 更有机会被调度。 通过使 CPU 限制大于 CPU 请求,你可以完成两件事:
-
Pod 可能会有突发性的活动,它可以利用碰巧可用的 CPU 资源。
-
Pod 在突发负载期间可以使用的 CPU 资源数量仍被限制为合理的数量。
-
-
如果不指定 CPU 限制
如果你没有为容器指定 CPU 限制,则会发生以下情况之一:
-
容器在可以使用的 CPU 资源上没有上限。因而可以使用所在节点上所有的可用 CPU 资源。
-
容器在具有默认 CPU 限制的名字空间中运行,系统会自动为容器设置默认限制。
-
-
如果你设置了 CPU 限制但未设置 CPU 请求
如果你为容器指定了 CPU 限制值但未为其设置 CPU 请求,Kubernetes 会自动为其 设置与 CPU 限制相同的 CPU 请求值。类似的,如果容器设置了内存限制值但未设置 内存请求值,Kubernetes 也会为其设置与内存限制值相同的内存请求。