一、最小生成树
1.1Prim算法
朴素版Prim
一般用于稠密图
算法流程:
集合表示当前已经在连通块的点
1.初始化距离,把所有距离都初始化为正无穷
2.n次迭代,找到集合外距离最小的点 ->t
3.用t来更新其它点到集合的距离
cpp
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 510,INF = 0x3f3f3f3f;
int n,m;
int g[N][N];
int dist[N];
bool st[N];
int prim()
{
memset(dsit,0x3f,sizeof dsit);
int res = 0;
for(int i = 0;i < n;i ++)
{
int t = -1;
for(int j = 1;j <= n;j ++)
{
if(! st[j] && (t == -1 || dist[t] > dist[j]))
t = j;
}
if(i && dist[t] == INF) return INF;
for(int j = 1;j <=n;j ++) dist[j] = min(dist[j],g[t][j]);
st[t] = true;
}
return res;
}
int main()
{
scanf("%d%d",&n,&m);
memset(g,0x3f,sizeof g);
while(m --)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
g[a][b] = g[b][a] = min(g[a][b],c);
}
int t = prim();
if(t == INF) puts("impossible");
else printf("%d\n",t);
return 0;
}
1.2Kruskal算法
一般用于稀疏图
算法流程:
1.将所有边按照权重从小到大排序
2.枚举每一条边(a,b),权重为c
如果(a,b)不连通,则将这条边加入集合中
cpp
#include<iostream>
#include<algorithm>
using namespace std;
const int N = 100010;
int n,m;
//并查集的集合
int p[N];
struct Edge
{
int a,b,w;
bool operator < (const Edge &W)const
{
return w < W.w;
}
}edges[N];
int find(int x)
{
if(p[x] != x) p[x] = find(p[x]);
return p[x];
}
int main()
{
scanf("%d%d",&n,&m);
for(int i = 0;i < m;i ++)
{
int a,b,w;
scanf("%d%d%d",&a,&b,&w);
edges[i] = {a,b,w};
}
sort(edges,edges + m);
for(int i = 1;i <= n;i ++) p[i] = i;
int res = 0,cnt = 0;
for(int i = 0; i < m; i ++)
{
//从小到大枚举所有边
int a = edges[i].a,b = edges[i].b,w = edges[i].w;
//知道a与b的祖宗节点
a = find(a),b = find(b);
//判断a与b是否连通
if(a != b)
{
//集合合并
p[a] = b;
res += w;
cnt ++;
}
}
if (cnt < n - 1) puts("impossible");
else printf("%d\n",res);
return 0;
}
二、二分图
二分图当且仅当图中不含奇数环
2.1染色法
cpp
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 100010,M = 200010;
int n,m;
int h[N],e[M],ne[M],idx;
int color[N];
void add(int a,int b)
{
e[idx] = b,ne[idx] = h[a],h[a] = idx ++;
}
bool dfs(int u,int c)
{
//当前点的颜色是c
color[u] = c;
for(int i = h[u];i != -1;i = ne[i])
{
int j = e[i];
if(!color[j])
{
if(!dfs(j,3 - c)) return false;
}
else if (color[j] == c) return false;
}
return true;
}
int main()
{
scanf("%d%d",&n,&m);
memset(h,-1,sizeof h);
while(m --)
{
int a,b;
scanf("%d%d",&a,&b);
add(a,b),add(b,a);
}
bool flag = true;
for(int i = 1;i <=n;i ++)
{
if(!color[i])
{
if(!dfs(i,1))
{
flag = false;
break;
}
}
}
if(flag) puts("Yes");
else puts("No");
return 0;
}
2.2匈牙利算法
cpp
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int N = 510,M = 100010;
int n1,n2,m;
int h[N],e[M],ne[M],idx;
int match[N];
bool st[N];
void add(int a,int b)
{
e[idx] = b,ne[idx] = h[a],h[a] = idx ++;
}
bool find(int x)
{
for(int i = h[x];i != -1;i = ne[i])
{
int j = e[i];
if(!st[j])
{
st[j] = true;
if(match[j] == 0 || find(match[j]))
{
match[j] = x;
return true;
}
}
}
return false;
}
int main()
{
scanf("%d%d%d",&n1,&n2,&m);
memset(h,-1,sizeof h);
while(m --)
{
int a,b;
scanf("%d%d",&a,&b);
add(a,b);
}
int res = 0;
for(int i = 0;i <= n1;i ++)
{
memset(st,false,sizeof st);
if(find(i)) res ++;
}
printf("%d\n",res);
return 0;
}