从前序与中序遍历序列构造二叉树,从中序与后序遍历序列构造二叉树

目录

从前序与中序遍历序列构造二叉树

题目链接

给定两个整数数组 preorder 和 inorder ,其中 preorder 是二叉树的先序遍历, inorder 是同一棵树的中序遍历,请构造二叉树并返回其根节点。

实例1:

输入: preorder = [3,9,20,15,7], inorder = [9,3,15,20,7]

输出: [3,9,20,null,null,15,7]
首先我们应该明白,
前序遍历 就是,先遍历根节点,然后遍历左子树,最后遍历右子树
中序遍历 就是,先遍历左子树,然后遍历根节点,最后遍历右子树
后续遍历就是,先遍历左子树,然后遍历右子树,最后遍历根节点
首先我们先试着用前序与中序遍历序列构造一棵二叉树

给出前序遍历数列 preorder 和 中序遍历数列 inorder

我们知道前序遍历二叉树必然先走根节点,所以我们可知preorder序列中的第一个数字3即为二叉树的根节点,中序遍历数列中,左子树必然先于右子树遍历,所以我们可知,在中序遍历数列inorder中的使用根节点将inorder划分为三个区间,(左子树)根(右子树),根节点3左边的元素为左子树,3右边的元素为右子树

现在3的左子树为空,右子树(15,20,7)继续使用相同方法构造二叉树

代码:

采用递归调用,分解子问题的方法

cpp 复制代码
class Solution {
public:
    TreeNode* build(vector<int>& preorder,vector<int>& inorder,
                        int& prev,int inbegin,int inend)
    {	//perorder 前序遍历序列,inorder 中序遍历序列,prev 指向前序遍历数列下标
        if(inbegin>inend)return NULL;
        //当前的根节点
        TreeNode* root=new TreeNode(preorder[prev]);
        int rooti=inbegin; //用来查找根节点在数组中的下班位置
        while(rooti<inend)
        {
            if(inorder[rooti]==preorder[prev])break;
            rooti++;
        }
        prev++;  //每次使用完prev需往后走,prev指的是数组前序遍历中用来判断根节点的
        //划分区间,(左子树,根)根(根,右子树)
        // (inbegin,rooti-1)rooti(rooti+1,inend)
        //函数递归继续构造二叉树的左右节点
        root->left=build(preorder,inorder,prev,inbegin,rooti-1); 
        root->right=build(preorder,inorder,prev,rooti+1,inend);
        return root;
    }
    TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
        int i=0;
        TreeNode* root=build(preorder,inorder,i,0,inorder.size()-1);
        return root;
    }
};

从中序与后序遍历序列构造二叉树

题目链接

给定两个整数数组 inorder 和 postorder ,其中 inorder 是二叉树的中序遍历, postorder 是同一棵树的后序遍历,请你构造并返回这颗 二叉树 。

实例1:

输入:inorder = [9,3,15,20,7], postorder = [9,15,7,20,3]

输出:[3,9,20,null,null,15,7]
使用中序与后序遍历序列构造二叉树 思路根前序与中序序列构造二叉树相似

给出二叉树的中序遍历inorder 和 后续遍历 postorder

我们知道后续遍历二叉树,根节点最后遍历,所以我们可知postorder序列中的最后一个元素3即为二叉树的根节点,中序遍历数列中,左子树优于根先遍历,右子树后于根遍历,所以我们可以根据这两个条件将inorder序列划分为三个区间,(左子树)根(右子树),根节点3左边的元素为左子树,3右边的元素为右子树

3的左子树序列只剩一个,即为3的左节点,右子树序列还有三个元素,需要继续划分,重复上述过程

代码:

cpp 复制代码
class Solution {
public:
    TreeNode* build(vector<int>& inorder, vector<int>& postorder,
                    int& prev,int inbegin,int inend)
    {
        if(inbegin>inend)return NULL;
        TreeNode* root=new TreeNode(postorder[prev]);
        int rooti=inbegin;
        while(rooti<inend)
        {
            if(postorder[prev]==inorder[rooti])break;
            rooti++;
        }
        prev--;
        //  (左,根)根(根,右)
        //先构造右子树,再构造左子树
        root->right=build(inorder,postorder,prev,rooti+1,inend);
        root->left=build(inorder,postorder,prev,inbegin,rooti-1);
        return root;
    }
    TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
        int i=postorder.size()-1;
        TreeNode* root=build(inorder,postorder,i,0,postorder.size()-1);
        return root;
    }
};
相关推荐
Word码6 分钟前
[C++语法] 继承 (用法详解)
java·jvm·c++
@––––––7 分钟前
力扣hot100—系列2-多维动态规划
算法·leetcode·动态规划
lxl13079 分钟前
C++算法(1)双指针
开发语言·c++
xsyaaaan20 分钟前
代码随想录Day31动态规划:1049最后一块石头的重量II_494目标和_474一和零
算法·动态规划
淀粉肠kk20 分钟前
C++11列表初始化:{}的革命性进化
c++
zhooyu33 分钟前
C++和OpenGL手搓3D游戏编程(20160207进展和效果)
开发语言·c++·游戏·3d·opengl
HAPPY酷36 分钟前
C++ 和 Python 的“容器”对决:从万金油到核武器
开发语言·c++·python
Jay Kay1 小时前
GVPO:Group Variance Policy Optimization
人工智能·算法·机器学习
Epiphany.5561 小时前
蓝桥杯备赛题目-----爆破
算法·职场和发展·蓝桥杯
YuTaoShao2 小时前
【LeetCode 每日一题】1653. 使字符串平衡的最少删除次数——(解法三)DP 空间优化
算法·leetcode·职场和发展