西瓜数据集D如下:
编号 | 色泽 | 根蒂 | 敲声 | 纹理 | 脐部 | 触感 | 好瓜 |
---|---|---|---|---|---|---|---|
1 | 青绿 | 蜷缩 | 浊响 | 清晰 | 凹陷 | 硬滑 | 是 |
2 | 乌黑 | 蜷缩 | 沉闷 | 清晰 | 凹陷 | 硬滑 | 是 |
3 | 乌黑 | 蜷缩 | 浊响 | 清晰 | 凹陷 | 硬滑 | 是 |
4 | 青绿 | 蜷缩 | 沉闷 | 清晰 | 凹陷 | 硬滑 | 是 |
5 | 浅白 | 蜷缩 | 浊响 | 清晰 | 凹陷 | 硬滑 | 是 |
6 | 青绿 | 稍蜷 | 浊响 | 清晰 | 稍凹 | 软粘 | 是 |
7 | 乌黑 | 稍蜷 | 浊响 | 稍糊 | 稍凹 | 软粘 | 是 |
8 | 乌黑 | 稍蜷 | 浊响 | 清晰 | 稍凹 | 硬滑 | 是 |
9 | 乌黑 | 稍蜷 | 沉闷 | 稍糊 | 稍凹 | 硬滑 | 否 |
10 | 青绿 | 硬挺 | 清脆 | 清晰 | 平坦 | 软粘 | 否 |
11 | 浅白 | 硬挺 | 清脆 | 模糊 | 平坦 | 硬滑 | 否 |
12 | 浅白 | 蜷缩 | 浊响 | 模糊 | 平坦 | 软粘 | 否 |
13 | 青绿 | 稍蜷 | 浊响 | 稍糊 | 凹陷 | 硬滑 | 否 |
14 | 浅白 | 稍蜷 | 沉闷 | 稍糊 | 凹陷 | 硬滑 | 否 |
15 | 乌黑 | 稍蜷 | 浊响 | 清晰 | 稍凹 | 软粘 | 否 |
16 | 浅白 | 蜷缩 | 浊响 | 模糊 | 平坦 | 硬滑 | 否 |
17 | 青绿 | 蜷缩 | 沉闷 | 稍糊 | 稍凹 | 硬滑 | 否 |
即集合D为分类问题,分类瓜的好坏是一个二分类问题,故|y| =2 ,故只存在p1,p2
信息熵为衡量信息混乱程度的量
记好瓜比例为p1,坏瓜比例为p2
- 若全是好瓜 , 则 p 1 = 1 , p 2 = 0 E n t ( D ) = − ∑ k = 1 ∣ y ∣ p k l o g 2 p k = − ( p 1 l o g 2 p 1 + p 2 l o g 2 p 2 ) = 1 ⋅ l o g 2 ⋅ 1 + 0 ⋅ l o g 2 ⋅ 0 = 0 2. 若全是好瓜 , 则 p 1 = 0 , p 2 = 1 E n t ( D ) = − ∑ k = 1 ∣ y ∣ p k l o g 2 p k = − ( p 1 l o g 2 p 1 + p 2 l o g 2 p 2 ) = 0 ⋅ l o g 2 ⋅ 0 + 1 ⋅ l o g 2 ⋅ 1 = 0 则完全不混乱为全是好瓜或全是坏瓜 , E n t ( D ) = 0 2. 若全是好坏瓜个一半 , 则 p 1 = 1 2 , p 2 = 1 2 E n t ( D ) = − ∑ k = 1 ∣ y ∣ p k l o g 2 p k = − ( p 1 l o g 2 p 1 + p 2 l o g 2 p 2 ) = − ( 1 2 ⋅ l o g 2 ⋅ 1 2 + 1 2 ⋅ l o g 2 ⋅ 1 2 ) = 1 则最混乱为 E n t ( D ) = 1 1.若全是好瓜,则p_1=1,p_2=0 \\ Ent(D) = -\sum\limits _{k=1}^{|y|}p_klog_2p_k \\= -(p_1log_2p_1 + p_2log_2p_2 ) \\=1\cdot log_2\cdot 1 + 0\cdot log_2\cdot 0 \\=0\\ 2.若全是好瓜,则p_1=0,p_2=1 \\ Ent(D) = -\sum\limits _{k=1}^{|y|}p_klog_2p_k \\= -(p_1log_2p_1 + p_2log_2p_2 ) \\=0\cdot log_2\cdot 0 + 1\cdot log_2\cdot 1 \\=0\\ 则完全不混乱为全是好瓜或全是坏瓜,Ent(D) = 0\\ 2.若全是好坏瓜个一半,则p_1=\frac12,p_2=\frac12 \\ Ent(D) = -\sum\limits _{k=1}^{|y|}p_klog_2p_k \\= -(p_1log_2p_1 + p_2log_2p_2 ) \\=-(\frac12\cdot log_2\cdot \frac12 + \frac12\cdot log_2\cdot \frac12 )\\=1\\ 则最混乱为Ent(D) = 1 1.若全是好瓜,则p1=1,p2=0Ent(D)=−k=1∑∣y∣pklog2pk=−(p1log2p1+p2log2p2)=1⋅log2⋅1+0⋅log2⋅0=02.若全是好瓜,则p1=0,p2=1Ent(D)=−k=1∑∣y∣pklog2pk=−(p1log2p1+p2log2p2)=0⋅log2⋅0+1⋅log2⋅1=0则完全不混乱为全是好瓜或全是坏瓜,Ent(D)=02.若全是好坏瓜个一半,则p1=21,p2=21Ent(D)=−k=1∑∣y∣pklog2pk=−(p1log2p1+p2log2p2)=−(21⋅log2⋅21+21⋅log2⋅21)=1则最混乱为Ent(D)=1
当前样本集合D中第k类样本所占比例为pk(k=1,2,3,...,|y|),则D的信息熵为:
E n t ( D ) = − ∑ k = 1 ∣ y ∣ p k l o g 2 p k Ent(D) = -\sum\limits _{k=1}^{|y|}p_klog_2p_k Ent(D)=−k=1∑∣y∣pklog2pk
信息增益为:
G a i n ( D , a ) = E n t ( D ) − ∑ v = 1 V ∣ D v ∣ ∣ D ∣ E n t ( D v ) Gain(D,a) = Ent(D) - \sum\limits _{v=1}^V \frac{|Dv|}{|D|}Ent(D^v) Gain(D,a)=Ent(D)−v=1∑V∣D∣∣Dv∣Ent(Dv)
python
import math
D = [
['青绿','蜷缩','浊响','清晰','凹陷','硬滑','是'],
['乌黑','蜷缩','沉闷','清晰','凹陷','硬滑','是'],
['乌黑','蜷缩','浊响','清晰','凹陷','硬滑','是'],
['青绿','蜷缩','沉闷','清晰','凹陷','硬滑','是'],
['浅白','蜷缩','浊响','清晰','凹陷','硬滑','是'],
['青绿','稍蜷','浊响','清晰','稍凹','软粘','是'],
['乌黑','稍蜷','浊响','稍糊','稍凹','软粘','是'],
['乌黑','稍蜷','浊响','清晰','稍凹','硬滑','是'],
['乌黑','稍蜷','沉闷','稍糊','稍凹','硬滑','否'],
['青绿','硬挺','清脆','清晰','平坦','软粘','否'],
['浅白','硬挺','清脆','模糊','平坦','硬滑','否'],
['浅白','蜷缩','浊响','模糊','平坦','软粘','否'],
['青绿','稍蜷','浊响','稍糊','凹陷','硬滑','否'],
['浅白','稍蜷','沉闷','稍糊','凹陷','硬滑','否'],
['乌黑','稍蜷','浊响','清晰','稍凹','软粘','否'],
['浅白','蜷缩','浊响','模糊','平坦','硬滑','否'],
['青绿','蜷缩','沉闷','稍糊','稍凹','硬滑','否']
]
A = ['色泽','根蒂','敲声','纹理','脐部','触感','好瓜']
# 当前样本集合D中第k类样本所占比例为pk(k=1,2,3,...,|y|)
# 计算A的信息熵,以数据最后一列为分类
def getEnt(D):
# 获取一个类型k->出现次数的map
kMap = dict()
for dLine in D:
# 获取分类值k
k = dLine[len(dLine) - 1]
# 获取当前k出现的次数
kNum = kMap.get(k)
if kNum is None:
kMap[k] = 1
else:
kMap[k] = kNum + 1
# 遍历map
dLen = len(D)
rs = 0
for kk in kMap:
pk = kMap[kk]/dLen
rs = rs + pk * math.log2(pk)
return -rs
# 求信息增益,aIndex为属性列号
def getGain(D,aIndex):
dMap = dict()
for dLine in D:
# 获取属性
k = dLine[aIndex]
# 属性所属的数组
dChildren = dMap.get(k)
if dChildren is None:
dChildren = []
dMap[k] = dChildren
dChildren.append(dLine)
rs = 0
for key in dMap:
dChildren = dMap[key]
entx = getEnt(dChildren)
print(entx)
r = len(dChildren)/len(D) * entx
rs = rs + r
return getEnt(D) - rs