2023.8.12号论文阅读

文章目录

  • [TriFormer: A Multi-modal Transformer Framework For Mild Cognitive Impairment Conversion Prediction](#TriFormer: A Multi-modal Transformer Framework For Mild Cognitive Impairment Conversion Prediction)
  • [SwIPE: Efficient and Robust Medical Image Segmentation with Implicit Patch Embeddings](#SwIPE: Efficient and Robust Medical Image Segmentation with Implicit Patch Embeddings)

TriFormer: A Multi-modal Transformer Framework For Mild Cognitive Impairment Conversion Prediction

摘要

轻度认知障碍(MCI)转化为阿尔茨海默病(AD)的预测对于早期治疗以预防或减缓AD的进展非常重要。为了准确预测MCI向稳定MCI或渐进式MCI的转换,我们提出了TriFormer,这是一种基于Transformer的新型框架,具有三个专用Transformer来整合多模态数据。

  • 图像Transformer从医学扫描中提取多视图图像特征
  • 临床Transformer嵌入和关联多模态临床数据
  • 模态融合Transformer,基于融合图像和临床Transformer的输出产生准确的预测

本文方法

左边的图像Transformer使用ViT从MRI中提取多视图图像特征。右边的临床Transformer研究不同临床数据之间的相关性。

图像切片标记与临床分类标记相连接,并作为模态融合转换器的输入,模态融合转换器结合提取的多模态特征来执行更准确的MCI转换预测。

实验结果

SwIPE: Efficient and Robust Medical Image Segmentation with Implicit Patch Embeddings

摘要

现代医学图像分割方法主要使用patch掩模形式的离散表示来学习特征并生成预测。虽然有效,但这种模式在空间上缺乏灵活性,难以适用于高分辨率图像,并且缺乏对物体形状的直接理解。为了解决这些限制,最近的一些研究利用隐式神经表征(INRs)来学习分割的连续表征。然而,这些方法往往直接采用为三维形状重建而设计的部件。更重要的是,这些公式也被限制在基于点或全局的上下文中,分别缺乏上下文理解或局部细粒度的细节,这两者都是准确分割的关键。

为了解决这个问题,我们提出了一种新颖的方法,SwIPE(隐式斑块嵌入分割),它利用inr的优势,在patch水平(而不是在点水平或图像水平)预测形状,从而实现准确的局部边界划定和全局形状一致性。

本文方法

在高层次上,SwIPE首先将输入图像编码为patch和图像形状embedding,然后使用这些embedding以及坐标信息P通过patch DP和图像解码器预测类占用分数

实验结果

相关推荐
红苕稀饭6666 小时前
LLaVA-OneVision论文阅读
论文阅读
CV-杨帆13 小时前
论文阅读:arxiv 2025 Scaling Laws for Differentially Private Language Models
论文阅读·人工智能·语言模型
红苕稀饭66616 小时前
LLaVA-Video论文阅读
论文阅读
铮铭16 小时前
【论文阅读】具身竞技场:面向具身智能的全面、统一、演进式评估平台
论文阅读·人工智能·机器人·世界模型
七元权18 小时前
论文阅读-FoundationStereo
论文阅读·深度学习·计算机视觉·零样本·基础模型·双目深度估计
berling001 天前
【论文阅读 | TCSVT 2024 | CCAFusion: 用于红外与可见光图像融合的跨模态坐标注意力网络】
论文阅读
0x2111 天前
[论文阅读]Dataset Protection via Watermarked Canaries in Retrieval-Augmented LLMs
论文阅读
bylander1 天前
【论文阅读】通义实验室,VACE: All-in-One Video Creation and Editing
论文阅读·人工智能·计算机视觉·音视频
飞机火车巴雷特1 天前
【论文阅读】Debating with More Persuasive LLMs Leads to More Truthful Answers
论文阅读·大模型·辩论机制
红苕稀饭6661 天前
LLAVA-MINI论文阅读
论文阅读