Python Opencv实践 - 图像高斯滤波(高斯模糊)

import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt

img = cv.imread("../SampleImages/pomeranian.png", cv.IMREAD_COLOR)
rows,cols,channels = img.shape
print(rows,cols,channels)

#为图像添加高斯噪声
#使用np.random.normal(loc=0.0, scale=1.0, size=None)
# loc: 高斯分布中心点,分布的均值
# scale: 高斯分布的宽度,分布的标准差
# size:维度。如果给定维度是(m,n,k)则从分布中抽取m*n*k个样本
#参考资料:https://blog.csdn.net/wzy628810/article/details/103807829
#         https://blog.csdn.net/sinat_29957455/article/details/123977298
def AddGaussianNoise(image, mean=0, var=0.005):
    image = np.array(image/255, dtype=float)                    #将像素值归一
    noise = np.random.normal(mean, var ** 0.5, image.shape)     #产生高斯噪声
    out = image + noise                                         #直接将归一化的图片与噪声相加

    if out.min() < 0:
        low_clip = -1.
    else:
        low_clip = 0.

    out = np.clip(out, low_clip, 1.0)
    out = np.uint8(out*255)
    return out

img_gaussian_noise = img.copy()
gauss_mean = 0
gauss_sigma = 0.003
#增加高斯噪声到图像
img_gaussian_noise = AddGaussianNoise(img_gaussian_noise, gauss_mean, gauss_sigma)

#高斯滤波(高斯模糊)
#cv.GaussianBlur(src, ksize, sigmaX, sigmaY, borderType)
#src: 输入图像
#ksize: kernel大小,高斯卷积和大小。注意卷积核的宽度和高度可以不同,但必须为正数且为奇数,也可以为零。
#sigmaX/Y: X和Y方向上的高斯标准差
#参考资料:https://blog.csdn.net/weixin_52012241/article/details/122284713
img_gaussian_blur_origin = cv.GaussianBlur(img, (3,3), 0)
img_gaussian_blur_noise = cv.GaussianBlur(img_gaussian_noise, (13,13), 0.006)


#显示图像
fig,axes = plt.subplots(nrows=2, ncols=2, figsize=(10,10), dpi=100)
axes[0][0].imshow(img[:,:,::-1])
axes[0][0].set_title("Original")
axes[0][1].imshow(img_gaussian_blur_origin[:,:,::-1])
axes[0][1].set_title("Original Gaussian Blurred")
axes[1][0].imshow(img_gaussian_noise[:,:,::-1])
axes[1][0].set_title("Add Gaussian Noise")
axes[1][1].imshow(img_gaussian_blur_noise[:,:,::-1])
axes[1][1].set_title("Gaussian Noise Blurred")
相关推荐
changwan几秒前
基于Celery+Supervisord的异步任务管理方案
后端·python·性能优化
君秋水1 分钟前
Python异步编程指南:asyncio从入门到精通(Python 3.10+)
后端·python
A boy CDEF girl1 分钟前
【JavaEE】阻塞队列
java·开发语言·java-ee
MWWZ7 分钟前
读取halcon中DXF文件并创建模板
opencv·计算机视觉
君秋水14 分钟前
FastAPI教程:20个核心概念从入门到 happy使用
后端·python·程序员
试着生存28 分钟前
java根据List<Object>中的某个属性排序(数据极少,顺序固定)
java·python·list
酷爱码28 分钟前
2025DNS二级域名分发PHP网站源码
开发语言·php
MSTcheng.32 分钟前
【C语言】动态内存管理
c语言·开发语言·算法
热心市民小汪33 分钟前
管理conda下python虚拟环境
开发语言·python·conda
程序员Linc36 分钟前
计算机视觉 vs 机器视觉 | 机器学习 vs 深度学习:核心差异与行业启示
深度学习·机器学习·计算机视觉·机器视觉