Python Opencv实践 - 图像高斯滤波(高斯模糊)

复制代码
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt

img = cv.imread("../SampleImages/pomeranian.png", cv.IMREAD_COLOR)
rows,cols,channels = img.shape
print(rows,cols,channels)

#为图像添加高斯噪声
#使用np.random.normal(loc=0.0, scale=1.0, size=None)
# loc: 高斯分布中心点,分布的均值
# scale: 高斯分布的宽度,分布的标准差
# size:维度。如果给定维度是(m,n,k)则从分布中抽取m*n*k个样本
#参考资料:https://blog.csdn.net/wzy628810/article/details/103807829
#         https://blog.csdn.net/sinat_29957455/article/details/123977298
def AddGaussianNoise(image, mean=0, var=0.005):
    image = np.array(image/255, dtype=float)                    #将像素值归一
    noise = np.random.normal(mean, var ** 0.5, image.shape)     #产生高斯噪声
    out = image + noise                                         #直接将归一化的图片与噪声相加

    if out.min() < 0:
        low_clip = -1.
    else:
        low_clip = 0.

    out = np.clip(out, low_clip, 1.0)
    out = np.uint8(out*255)
    return out

img_gaussian_noise = img.copy()
gauss_mean = 0
gauss_sigma = 0.003
#增加高斯噪声到图像
img_gaussian_noise = AddGaussianNoise(img_gaussian_noise, gauss_mean, gauss_sigma)

#高斯滤波(高斯模糊)
#cv.GaussianBlur(src, ksize, sigmaX, sigmaY, borderType)
#src: 输入图像
#ksize: kernel大小,高斯卷积和大小。注意卷积核的宽度和高度可以不同,但必须为正数且为奇数,也可以为零。
#sigmaX/Y: X和Y方向上的高斯标准差
#参考资料:https://blog.csdn.net/weixin_52012241/article/details/122284713
img_gaussian_blur_origin = cv.GaussianBlur(img, (3,3), 0)
img_gaussian_blur_noise = cv.GaussianBlur(img_gaussian_noise, (13,13), 0.006)


#显示图像
fig,axes = plt.subplots(nrows=2, ncols=2, figsize=(10,10), dpi=100)
axes[0][0].imshow(img[:,:,::-1])
axes[0][0].set_title("Original")
axes[0][1].imshow(img_gaussian_blur_origin[:,:,::-1])
axes[0][1].set_title("Original Gaussian Blurred")
axes[1][0].imshow(img_gaussian_noise[:,:,::-1])
axes[1][0].set_title("Add Gaussian Noise")
axes[1][1].imshow(img_gaussian_blur_noise[:,:,::-1])
axes[1][1].set_title("Gaussian Noise Blurred")
相关推荐
兮动人1 小时前
C语言之指针入门
c语言·开发语言·c语言之指针入门
AI街潜水的八角1 小时前
基于Opencv的条形码识别与创建
人工智能·opencv·计算机视觉
ada7_1 小时前
LeetCode(python)78.子集
开发语言·数据结构·python·算法·leetcode·职场和发展
我送炭你添花2 小时前
Pelco KBD300A 模拟器:06+5.串口实现的逻辑优化、配置管理与协议完善(二次迭代)
python·运维开发
databook2 小时前
前注意加工:让你的图表抓住读者的眼球
python·数据分析·数据可视化
知行学思2 小时前
Python配置管理完全指南:从dotenv到pydantic_settings
数据库·python·fastapi·环境变量·配置管理·pydantic·dotenv
nbsaas-boot2 小时前
Go 项目中如何正确升级第三方依赖(Go Modules 实战指南)
开发语言·后端·golang
这张生成的图像能检测吗2 小时前
(论文速读)CCASeg:基于卷积交叉注意的语义分割多尺度上下文解码
人工智能·深度学习·计算机视觉·语义分割
wadesir3 小时前
C++基本数据类型详解(零基础掌握C++核心数据类型)
java·开发语言·c++
skywalk81633 小时前
wow文件处理trinitycore的文件处理
开发语言·游戏