Python Opencv实践 - 图像高斯滤波(高斯模糊)

复制代码
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt

img = cv.imread("../SampleImages/pomeranian.png", cv.IMREAD_COLOR)
rows,cols,channels = img.shape
print(rows,cols,channels)

#为图像添加高斯噪声
#使用np.random.normal(loc=0.0, scale=1.0, size=None)
# loc: 高斯分布中心点,分布的均值
# scale: 高斯分布的宽度,分布的标准差
# size:维度。如果给定维度是(m,n,k)则从分布中抽取m*n*k个样本
#参考资料:https://blog.csdn.net/wzy628810/article/details/103807829
#         https://blog.csdn.net/sinat_29957455/article/details/123977298
def AddGaussianNoise(image, mean=0, var=0.005):
    image = np.array(image/255, dtype=float)                    #将像素值归一
    noise = np.random.normal(mean, var ** 0.5, image.shape)     #产生高斯噪声
    out = image + noise                                         #直接将归一化的图片与噪声相加

    if out.min() < 0:
        low_clip = -1.
    else:
        low_clip = 0.

    out = np.clip(out, low_clip, 1.0)
    out = np.uint8(out*255)
    return out

img_gaussian_noise = img.copy()
gauss_mean = 0
gauss_sigma = 0.003
#增加高斯噪声到图像
img_gaussian_noise = AddGaussianNoise(img_gaussian_noise, gauss_mean, gauss_sigma)

#高斯滤波(高斯模糊)
#cv.GaussianBlur(src, ksize, sigmaX, sigmaY, borderType)
#src: 输入图像
#ksize: kernel大小,高斯卷积和大小。注意卷积核的宽度和高度可以不同,但必须为正数且为奇数,也可以为零。
#sigmaX/Y: X和Y方向上的高斯标准差
#参考资料:https://blog.csdn.net/weixin_52012241/article/details/122284713
img_gaussian_blur_origin = cv.GaussianBlur(img, (3,3), 0)
img_gaussian_blur_noise = cv.GaussianBlur(img_gaussian_noise, (13,13), 0.006)


#显示图像
fig,axes = plt.subplots(nrows=2, ncols=2, figsize=(10,10), dpi=100)
axes[0][0].imshow(img[:,:,::-1])
axes[0][0].set_title("Original")
axes[0][1].imshow(img_gaussian_blur_origin[:,:,::-1])
axes[0][1].set_title("Original Gaussian Blurred")
axes[1][0].imshow(img_gaussian_noise[:,:,::-1])
axes[1][0].set_title("Add Gaussian Noise")
axes[1][1].imshow(img_gaussian_blur_noise[:,:,::-1])
axes[1][1].set_title("Gaussian Noise Blurred")
相关推荐
databook8 小时前
Manim实现闪光轨迹特效
后端·python·动效
Juchecar10 小时前
解惑:NumPy 中 ndarray.ndim 到底是什么?
python
用户83562907805110 小时前
Python 删除 Excel 工作表中的空白行列
后端·python
Json_10 小时前
使用python-fastApi框架开发一个学校宿舍管理系统-前后端分离项目
后端·python·fastapi
CoovallyAIHub12 小时前
中科大DSAI Lab团队多篇论文入选ICCV 2025,推动三维视觉与泛化感知技术突破
深度学习·算法·计算机视觉
数据智能老司机17 小时前
精通 Python 设计模式——分布式系统模式
python·设计模式·架构
数据智能老司机18 小时前
精通 Python 设计模式——并发与异步模式
python·设计模式·编程语言
数据智能老司机18 小时前
精通 Python 设计模式——测试模式
python·设计模式·架构
数据智能老司机18 小时前
精通 Python 设计模式——性能模式
python·设计模式·架构
CoovallyAIHub18 小时前
港大&字节重磅发布DanceGRPO:突破视觉生成RLHF瓶颈,多项任务性能提升超180%!
深度学习·算法·计算机视觉