在 Transformer 之前生成文本 Text generation before transformers

1. 在 Transformer 之前生成文本

重要的是要注意,生成算法并不是新的。先前的语言模型使用了一个叫做循环神经网络或RNN的架构。尽管RNN在其时代很强大,但由于需要大量的计算和内存来很好

地执行生成任务,所以它们的能力受到了限制。让我们看一个RNN执行简单的下一个词预测生成任务的例子。

模型只看到了一个之前的词,预测不可能很好。当您扩展RNN实现以能够看到文本中的更多前面的词时,您必须大幅度地扩展模型使用的资源。至于预测,嗯,模型在这里失败了。

即使您扩展了模型,它仍然没有看到足够的输入来做出好的预测。为了成功预测下一个词,模型需要看到的不仅仅是前几个词。模型需要理解整个句子甚至整个文档。这里的问题是语言是复杂的。

在许多语言中,一个词可以有多个含义。这些是同音词。在这种情况下,只有在句子的上下文中我们才能看到是什么类型的银行。

句子结构中的词可以是模糊的,或者我们可能称之为句法模糊性。以这句话为例:"老师用书教学生。"老师是用书教学还是学生有书,还是两者都有?如果有时我们自己都不能理解人类语言,算法如何能理解呢?

好吧,在2017年,Google和多伦多大学发布了这篇论文《Attention is All You Need》后,一切都改变了。变压器架构已经到来。

这种新颖的方法解锁了我们今天看到的生成AI的进步。它可以有效地扩展到使用多核GPU,它可以并行处理输入数据,使用更大的训练数据集,并且关键是,它能够学会关注它正在处理的词的含义。而Attention is All You Need。这就是标题。

参考

https://www.coursera.org/learn/generative-ai-with-llms/lecture/vSAdg/text-generation-before-transformers

相关推荐
love530love12 分钟前
【笔记】ComfUI RIFEInterpolation 节点缺失问题(cupy CUDA 安装)解决方案
人工智能·windows·笔记·python·插件·comfyui
Lucky小小吴19 分钟前
Google《Prompt Engineering》2025白皮书——最佳实践十四式
人工智能·prompt
AI科技星21 分钟前
为什么变化的电磁场才产生引力场?—— 统一场论揭示的时空动力学本质
数据结构·人工智能·经验分享·算法·计算机视觉
青瓷程序设计21 分钟前
昆虫识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
咩图24 分钟前
C#创建AI项目
开发语言·人工智能·c#
深蓝海拓27 分钟前
opencv的模板匹配(Template Matching)学习笔记
人工智能·opencv·计算机视觉
美林数据Tempodata36 分钟前
李飞飞最新论文深度解读:从语言到世界,空间智能将重写AI的未来十年
人工智能·ai·空间智能
东哥说-MES|从入门到精通39 分钟前
数字化部分内容 | 十四五年规划和2035年远景目标纲要(新华社正式版)
大数据·人工智能·数字化转型·mes·数字化工厂·2035·十四五规划
小殊小殊40 分钟前
DeepSeek为什么这么慢?
人工智能·深度学习
极客BIM工作室1 小时前
从静态到动态:Sora与文生图潜在扩散模型的技术同异与AIGC演进逻辑
人工智能·aigc