深入浅出Pytorch函数——torch.nn.init.sparse_

分类目录:《深入浅出Pytorch函数》总目录

相关文章:

· 深入浅出Pytorch函数------torch.nn.init.calculate_gain

· 深入浅出Pytorch函数------torch.nn.init.uniform_

· 深入浅出Pytorch函数------torch.nn.init.normal_

· 深入浅出Pytorch函数------torch.nn.init.constant_

· 深入浅出Pytorch函数------torch.nn.init.ones_

· 深入浅出Pytorch函数------torch.nn.init.zeros_

· 深入浅出Pytorch函数------torch.nn.init.eye_

· 深入浅出Pytorch函数------torch.nn.init.dirac_

· 深入浅出Pytorch函数------torch.nn.init.xavier_uniform_

· 深入浅出Pytorch函数------torch.nn.init.xavier_normal_

· 深入浅出Pytorch函数------torch.nn.init.kaiming_uniform_

· 深入浅出Pytorch函数------torch.nn.init.kaiming_normal_

· 深入浅出Pytorch函数------torch.nn.init.trunc_normal_

· 深入浅出Pytorch函数------torch.nn.init.orthogonal_

· 深入浅出Pytorch函数------torch.nn.init.sparse_


torch.nn.init模块中的所有函数都用于初始化神经网络参数,因此它们都在torc.no_grad()模式下运行,autograd不会将其考虑在内。

根据Martens, J等人在《Deep learning via Hessian-free optimization》中描述的方法,将2维的输入张量或变量当做稀疏矩阵填充,其中非零元素生成自 N ( 0 , std 2 ) N(0, \text{std}^2) N(0,std2)。

语法

复制代码
torch.nn.init.sparse_(tensor, sparsity, std=0.01)

参数

  • tensor:[Tensor] 一个 N N N维张量torch.Tensor
  • sparsity:每列中需要被设置成零的元素比例
  • std:用于生成非零值的正态分布的标准差

返回值

一个torch.Tensor且参数tensor也会更新

实例

复制代码
w = torch.empty(3, 5)
nn.init.sparse_(w, sparsity=0.1)

函数实现

复制代码
def sparse_(tensor, sparsity, std=0.01):
    r"""Fills the 2D input `Tensor` as a sparse matrix, where the
    non-zero elements will be drawn from the normal distribution
    :math:`\mathcal{N}(0, 0.01)`, as described in `Deep learning via
    Hessian-free optimization` - Martens, J. (2010).

    Args:
        tensor: an n-dimensional `torch.Tensor`
        sparsity: The fraction of elements in each column to be set to zero
        std: the standard deviation of the normal distribution used to generate
            the non-zero values

    Examples:
        >>> w = torch.empty(3, 5)
        >>> nn.init.sparse_(w, sparsity=0.1)
    """
    if tensor.ndimension() != 2:
        raise ValueError("Only tensors with 2 dimensions are supported")

    rows, cols = tensor.shape
    num_zeros = int(math.ceil(sparsity * rows))

    with torch.no_grad():
        tensor.normal_(0, std)
        for col_idx in range(cols):
            row_indices = torch.randperm(rows)
            zero_indices = row_indices[:num_zeros]
            tensor[zero_indices, col_idx] = 0
    return tensor
相关推荐
夸克App2 分钟前
实现营销投放全流程自动化 超级汇川推出信息流智能投放产品“AI智投“
运维·人工智能·自动化
Rainbond云原生5 分钟前
83k Star!n8n 让 AI 驱动的工作流自动化触手可及
运维·人工智能·自动化
招风的黑耳7 分钟前
Axure大屏可视化模板:多领域数据决策的新引擎
人工智能·产品设计
朴拙数科20 分钟前
艺术字体AI生成阿里云WordArt锦书、通义万相、SiliconFlow、Pillow+OpenCV本地生成艺术字体
人工智能·阿里云·pillow
听风吹等浪起30 分钟前
NLP实战(4):使用PyTorch构建LSTM模型预测糖尿病
人工智能·pytorch·自然语言处理·lstm
敖云岚1 小时前
【AI】SpringAI 第五弹:接入千帆大模型
java·大数据·人工智能·spring boot·后端
三道杠卷胡1 小时前
【AI News | 20250424】每日AI进展
人工智能·pytorch·python·语言模型·github
追逐☞1 小时前
机器学习(9)——随机森林
人工智能·随机森林·机器学习
pljnb1 小时前
长短期记忆网络(LSTM)
人工智能·rnn·lstm
何双新1 小时前
第1讲:Transformers 的崛起:从RNN到Self-Attention
人工智能·rnn·深度学习