04有监督算法——支持向量机

1.支持向量机

1.1 定义

支持向量机( Support Vector Machine )要解决的问题

什么样的法策边界才是最好的呢?

特征数据本身如果就很难分,怎么办呢?

计算复杂度怎么样?能实际应用吗?

支持向量机( Support Vector Machine , SVM)是一类按监督学习( supervised learning )方式对数据进行二元分类的广义线性分类器( generalized linear classifier ) 。

其决策边界是对学习样本求解的最大边距超平面( maximum-margin hyperplane ) 。

找到集合边缘上的若干数据(称为支持向量(Support Vector ) ),用这些点找出一个平面(称为决策面),使得支持向量到该平面的距离最大。

任意超平面可以用下面这个线性方程来描述: W T x + b = 0 {{\rm{W}}^{\rm{T}}}{\rm{x}} + b = 0 WTx+b=0

点到平面的距离: W T x ′ = − b , W T X ′ ′ = − b {{\rm{W}}^{\rm{T}}}{\rm{x' = }} - b,{W^T}X'' = - b WTx′=−b,WTX′′=−b

d i s t a n c e ( x , b , w ) = ∣ W T ∥ W ∥ ( x − x ′ ) ∣ = 1 ∥ W ∥ ∣ W T x + b ∣ {\rm{distance(x,b,w) = }}\left| {{{{{\rm{W}}^{\rm{T}}}} \over {\left\| W \right\|}}(x - {\rm{x'}})} \right|{\rm{ = }}{{\rm{1}} \over {\left\| W \right\|}}\left| {{{\rm{W}}^{\rm{T}}}x + b} \right| distance(x,b,w)= ∥W∥WT(x−x′) =∥W∥1 WTx+b

1.2 SVM软间隔

1.3 SVM核变换

核函数,可以将样本从原始空间映射到一个更高维的特质空间中,使得样本在新的空间中线性可分。

  • 线性核变换: K ( x i , x j ) = x i T x j K({x_i},{x_j}) = x_i^T{x_j} K(xi,xj)=xiTxj
  • 多项式核变换: K ( x i , x j ) = ( x i T x j ) d K({x_i},{x_j}) = {(x_i^T{x_j})^d} K(xi,xj)=(xiTxj)d
  • 高斯核函数: K ( x i , x j ) = exp ⁡ ( − ∥ x i − y i ∥ 2 y 2 ) K({x_i},{x_j}) = \exp ( - {{\left\| {{x_i} - {y_i}} \right\|} \over {2{y^2}}}) K(xi,xj)=exp(−2y2∥xi−yi∥)
相关推荐
RAG专家42 分钟前
【Mixture-of-RAG】将文本和表格与大型语言模型相结合
人工智能·语言模型·rag·检索增强生成
星期天要睡觉4 小时前
自然语言处理(NLP)——自然语言处理原理、发展历程、核心技术
人工智能·自然语言处理
低音钢琴4 小时前
【人工智能系列:机器学习学习和进阶01】机器学习初学者指南:理解核心算法与应用
人工智能·算法·机器学习
大千AI助手5 小时前
Hoeffding树:数据流挖掘中的高效分类算法详解
人工智能·机器学习·分类·数据挖掘·流数据··hoeffding树
新知图书5 小时前
大模型微调定义与分类
人工智能·大模型应用开发·大模型应用
山烛5 小时前
一文读懂YOLOv4:目标检测领域的技术融合与性能突破
人工智能·yolo·目标检测·计算机视觉·yolov4
大千AI助手5 小时前
独热编码:分类数据处理的基石技术
人工智能·机器学习·分类·数据挖掘·特征工程·one-hot·独热编码
钱彬 (Qian Bin)6 小时前
项目实践4—全球证件智能识别系统(Qt客户端开发+FastAPI后端人工智能服务开发)
人工智能·qt·fastapi
钱彬 (Qian Bin)6 小时前
项目实践3—全球证件智能识别系统(Qt客户端开发+FastAPI后端人工智能服务开发)
人工智能·qt·fastapi
Microsoft Word6 小时前
向量数据库与RAG
数据库·人工智能·向量数据库·rag