04有监督算法——支持向量机

1.支持向量机

1.1 定义

支持向量机( Support Vector Machine )要解决的问题

什么样的法策边界才是最好的呢?

特征数据本身如果就很难分,怎么办呢?

计算复杂度怎么样?能实际应用吗?

支持向量机( Support Vector Machine , SVM)是一类按监督学习( supervised learning )方式对数据进行二元分类的广义线性分类器( generalized linear classifier ) 。

其决策边界是对学习样本求解的最大边距超平面( maximum-margin hyperplane ) 。

找到集合边缘上的若干数据(称为支持向量(Support Vector ) ),用这些点找出一个平面(称为决策面),使得支持向量到该平面的距离最大。

任意超平面可以用下面这个线性方程来描述: W T x + b = 0 {{\rm{W}}^{\rm{T}}}{\rm{x}} + b = 0 WTx+b=0

点到平面的距离: W T x ′ = − b , W T X ′ ′ = − b {{\rm{W}}^{\rm{T}}}{\rm{x' = }} - b,{W^T}X'' = - b WTx′=−b,WTX′′=−b

d i s t a n c e ( x , b , w ) = ∣ W T ∥ W ∥ ( x − x ′ ) ∣ = 1 ∥ W ∥ ∣ W T x + b ∣ {\rm{distance(x,b,w) = }}\left| {{{{{\rm{W}}^{\rm{T}}}} \over {\left\| W \right\|}}(x - {\rm{x'}})} \right|{\rm{ = }}{{\rm{1}} \over {\left\| W \right\|}}\left| {{{\rm{W}}^{\rm{T}}}x + b} \right| distance(x,b,w)= ∥W∥WT(x−x′) =∥W∥1 WTx+b

1.2 SVM软间隔

1.3 SVM核变换

核函数,可以将样本从原始空间映射到一个更高维的特质空间中,使得样本在新的空间中线性可分。

  • 线性核变换: K ( x i , x j ) = x i T x j K({x_i},{x_j}) = x_i^T{x_j} K(xi,xj)=xiTxj
  • 多项式核变换: K ( x i , x j ) = ( x i T x j ) d K({x_i},{x_j}) = {(x_i^T{x_j})^d} K(xi,xj)=(xiTxj)d
  • 高斯核函数: K ( x i , x j ) = exp ⁡ ( − ∥ x i − y i ∥ 2 y 2 ) K({x_i},{x_j}) = \exp ( - {{\left\| {{x_i} - {y_i}} \right\|} \over {2{y^2}}}) K(xi,xj)=exp(−2y2∥xi−yi∥)
相关推荐
天上的光1 小时前
17.迁移学习
人工智能·机器学习·迁移学习
后台开发者Ethan1 小时前
Python需要了解的一些知识
开发语言·人工智能·python
猫头虎1 小时前
猫头虎AI分享|一款Coze、Dify类开源AI应用超级智能体快速构建工具:FastbuildAI
人工智能·开源·prompt·github·aigc·ai编程·ai-native
重启的码农2 小时前
ggml 介绍 (6) 后端 (ggml_backend)
c++·人工智能·神经网络
重启的码农2 小时前
ggml介绍 (7)后端缓冲区 (ggml_backend_buffer)
c++·人工智能·神经网络
数据智能老司机2 小时前
面向企业的图学习扩展——图简介
人工智能·机器学习·ai编程
mit6.8242 小时前
[AI React Web] 包与依赖管理 | `axios`库 | `framer-motion`库
前端·人工智能·react.js
小阿鑫2 小时前
不要太信任Cursor,这位网友被删库了。。。
人工智能·aigc·cursor·部署mcp
说私域3 小时前
基于定制开发开源 AI 智能名片 S2B2C 商城小程序的热点与人工下发策略研究
人工智能·小程序
Moshow郑锴3 小时前
机器学习相关算法:回溯算法 贪心算法 回归算法(线性回归) 算法超参数 多项式时间 朴素贝叶斯分类算法
算法·机器学习·回归