04有监督算法——支持向量机

1.支持向量机

1.1 定义

支持向量机( Support Vector Machine )要解决的问题

什么样的法策边界才是最好的呢?

特征数据本身如果就很难分,怎么办呢?

计算复杂度怎么样?能实际应用吗?

支持向量机( Support Vector Machine , SVM)是一类按监督学习( supervised learning )方式对数据进行二元分类的广义线性分类器( generalized linear classifier ) 。

其决策边界是对学习样本求解的最大边距超平面( maximum-margin hyperplane ) 。

找到集合边缘上的若干数据(称为支持向量(Support Vector ) ),用这些点找出一个平面(称为决策面),使得支持向量到该平面的距离最大。

任意超平面可以用下面这个线性方程来描述: W T x + b = 0 {{\rm{W}}^{\rm{T}}}{\rm{x}} + b = 0 WTx+b=0

点到平面的距离: W T x ′ = − b , W T X ′ ′ = − b {{\rm{W}}^{\rm{T}}}{\rm{x' = }} - b,{W^T}X'' = - b WTx′=−b,WTX′′=−b

d i s t a n c e ( x , b , w ) = ∣ W T ∥ W ∥ ( x − x ′ ) ∣ = 1 ∥ W ∥ ∣ W T x + b ∣ {\rm{distance(x,b,w) = }}\left| {{{{{\rm{W}}^{\rm{T}}}} \over {\left\| W \right\|}}(x - {\rm{x'}})} \right|{\rm{ = }}{{\rm{1}} \over {\left\| W \right\|}}\left| {{{\rm{W}}^{\rm{T}}}x + b} \right| distance(x,b,w)= ∥W∥WT(x−x′) =∥W∥1 WTx+b

1.2 SVM软间隔

1.3 SVM核变换

核函数,可以将样本从原始空间映射到一个更高维的特质空间中,使得样本在新的空间中线性可分。

  • 线性核变换: K ( x i , x j ) = x i T x j K({x_i},{x_j}) = x_i^T{x_j} K(xi,xj)=xiTxj
  • 多项式核变换: K ( x i , x j ) = ( x i T x j ) d K({x_i},{x_j}) = {(x_i^T{x_j})^d} K(xi,xj)=(xiTxj)d
  • 高斯核函数: K ( x i , x j ) = exp ⁡ ( − ∥ x i − y i ∥ 2 y 2 ) K({x_i},{x_j}) = \exp ( - {{\left\| {{x_i} - {y_i}} \right\|} \over {2{y^2}}}) K(xi,xj)=exp(−2y2∥xi−yi∥)
相关推荐
青春不败 177-3266-052027 分钟前
MATLAB近红外光谱分析技术及实践技术应用
随机森林·机器学习·支持向量机·matlab·卷积神经网络·遗传算法·近红外光谱
白-胖-子4 小时前
深入剖析大模型在文本生成式 AI 产品架构中的核心地位
人工智能·架构
想要成为计算机高手6 小时前
11. isaacsim4.2教程-Transform 树与Odometry
人工智能·机器人·自动驾驶·ros·rviz·isaac sim·仿真环境
NeoFii6 小时前
Day 22: 复习
机器学习
静心问道6 小时前
InstructBLIP:通过指令微调迈向通用视觉-语言模型
人工智能·多模态·ai技术应用
宇称不守恒4.07 小时前
2025暑期—06神经网络-常见网络2
网络·人工智能·神经网络
小楓12017 小时前
醫護行業在未來會被AI淘汰嗎?
人工智能·醫療·護理·職業
数据与人工智能律师7 小时前
数字迷雾中的安全锚点:解码匿名化与假名化的法律边界与商业价值
大数据·网络·人工智能·云计算·区块链
chenchihwen7 小时前
大模型应用班-第2课 DeepSeek使用与提示词工程课程重点 学习ollama 安装 用deepseek-r1:1.5b 分析PDF 内容
人工智能·学习
说私域7 小时前
公域流量向私域流量转化策略研究——基于开源AI智能客服、AI智能名片与S2B2C商城小程序的融合应用
人工智能·小程序