04有监督算法——支持向量机

1.支持向量机

1.1 定义

支持向量机( Support Vector Machine )要解决的问题

什么样的法策边界才是最好的呢?

特征数据本身如果就很难分,怎么办呢?

计算复杂度怎么样?能实际应用吗?

支持向量机( Support Vector Machine , SVM)是一类按监督学习( supervised learning )方式对数据进行二元分类的广义线性分类器( generalized linear classifier ) 。

其决策边界是对学习样本求解的最大边距超平面( maximum-margin hyperplane ) 。

找到集合边缘上的若干数据(称为支持向量(Support Vector ) ),用这些点找出一个平面(称为决策面),使得支持向量到该平面的距离最大。

任意超平面可以用下面这个线性方程来描述: W T x + b = 0 {{\rm{W}}^{\rm{T}}}{\rm{x}} + b = 0 WTx+b=0

点到平面的距离: W T x ′ = − b , W T X ′ ′ = − b {{\rm{W}}^{\rm{T}}}{\rm{x' = }} - b,{W^T}X'' = - b WTx′=−b,WTX′′=−b

d i s t a n c e ( x , b , w ) = ∣ W T ∥ W ∥ ( x − x ′ ) ∣ = 1 ∥ W ∥ ∣ W T x + b ∣ {\rm{distance(x,b,w) = }}\left| {{{{{\rm{W}}^{\rm{T}}}} \over {\left\| W \right\|}}(x - {\rm{x'}})} \right|{\rm{ = }}{{\rm{1}} \over {\left\| W \right\|}}\left| {{{\rm{W}}^{\rm{T}}}x + b} \right| distance(x,b,w)= ∥W∥WT(x−x′) =∥W∥1 WTx+b

1.2 SVM软间隔

1.3 SVM核变换

核函数,可以将样本从原始空间映射到一个更高维的特质空间中,使得样本在新的空间中线性可分。

  • 线性核变换: K ( x i , x j ) = x i T x j K({x_i},{x_j}) = x_i^T{x_j} K(xi,xj)=xiTxj
  • 多项式核变换: K ( x i , x j ) = ( x i T x j ) d K({x_i},{x_j}) = {(x_i^T{x_j})^d} K(xi,xj)=(xiTxj)d
  • 高斯核函数: K ( x i , x j ) = exp ⁡ ( − ∥ x i − y i ∥ 2 y 2 ) K({x_i},{x_j}) = \exp ( - {{\left\| {{x_i} - {y_i}} \right\|} \over {2{y^2}}}) K(xi,xj)=exp(−2y2∥xi−yi∥)
相关推荐
小毅&Nora7 分钟前
【微服务】【Nacos 3】 ② 深度解析:AI模块介绍
人工智能·微服务·云原生·架构
Dev7z10 分钟前
基于图像处理与数据分析的智能答题卡识别与阅卷系统设计与实现
图像处理·人工智能·数据分析
GoldenSpider.AI10 分钟前
跨越地球的计算:StarCloud如何将AI数据中心送入太空,掀起下一代能源革命
人工智能·能源·starcloud·nvidia h100·philip johnston·ai创业公司
权泽谦12 分钟前
Java 在机器学习中的应用:基于 DL4J 与 Weka 的完整实战案例
java·机器学习·数据挖掘
檐下翻书17329 分钟前
流程图配色与美化:让你的图表会“说话”
论文阅读·人工智能·信息可视化·流程图·论文笔记
江塘34 分钟前
机器学习-决策树多种生成方法讲解及实战代码讲解(C++/Python实现)
c++·python·决策树·机器学习
时序之心1 小时前
时序论文速递:覆盖损失函数优化、模型架构创新、理论基础与表征学习、应用场景与隐私保护等方向(11.10-11.14)
人工智能·损失函数·时间序列·表征学习·时序论文
IT_陈寒1 小时前
Vue3性能优化实战:我从这5个技巧中获得了40%的渲染提升
前端·人工智能·后端
DevUI团队1 小时前
🔥Angular开发者看过来:不止于Vue,MateChat智能化UI库现已全面支持Angular!
前端·人工智能·angular.js
北京青翼科技1 小时前
【HD200IS A2 DK 】昇腾 310B 高可靠智能计算开发套件
图像处理·人工智能·信号处理·智能硬件