04有监督算法——支持向量机

1.支持向量机

1.1 定义

支持向量机( Support Vector Machine )要解决的问题

什么样的法策边界才是最好的呢?

特征数据本身如果就很难分,怎么办呢?

计算复杂度怎么样?能实际应用吗?

支持向量机( Support Vector Machine , SVM)是一类按监督学习( supervised learning )方式对数据进行二元分类的广义线性分类器( generalized linear classifier ) 。

其决策边界是对学习样本求解的最大边距超平面( maximum-margin hyperplane ) 。

找到集合边缘上的若干数据(称为支持向量(Support Vector ) ),用这些点找出一个平面(称为决策面),使得支持向量到该平面的距离最大。

任意超平面可以用下面这个线性方程来描述: W T x + b = 0 {{\rm{W}}^{\rm{T}}}{\rm{x}} + b = 0 WTx+b=0

点到平面的距离: W T x ′ = − b , W T X ′ ′ = − b {{\rm{W}}^{\rm{T}}}{\rm{x' = }} - b,{W^T}X'' = - b WTx′=−b,WTX′′=−b

d i s t a n c e ( x , b , w ) = ∣ W T ∥ W ∥ ( x − x ′ ) ∣ = 1 ∥ W ∥ ∣ W T x + b ∣ {\rm{distance(x,b,w) = }}\left| {{{{{\rm{W}}^{\rm{T}}}} \over {\left\| W \right\|}}(x - {\rm{x'}})} \right|{\rm{ = }}{{\rm{1}} \over {\left\| W \right\|}}\left| {{{\rm{W}}^{\rm{T}}}x + b} \right| distance(x,b,w)= ∥W∥WT(x−x′) =∥W∥1 WTx+b

1.2 SVM软间隔

1.3 SVM核变换

核函数,可以将样本从原始空间映射到一个更高维的特质空间中,使得样本在新的空间中线性可分。

  • 线性核变换: K ( x i , x j ) = x i T x j K({x_i},{x_j}) = x_i^T{x_j} K(xi,xj)=xiTxj
  • 多项式核变换: K ( x i , x j ) = ( x i T x j ) d K({x_i},{x_j}) = {(x_i^T{x_j})^d} K(xi,xj)=(xiTxj)d
  • 高斯核函数: K ( x i , x j ) = exp ⁡ ( − ∥ x i − y i ∥ 2 y 2 ) K({x_i},{x_j}) = \exp ( - {{\left\| {{x_i} - {y_i}} \right\|} \over {2{y^2}}}) K(xi,xj)=exp(−2y2∥xi−yi∥)
相关推荐
商业讯网116 分钟前
国家电投海外项目运营经验丰富
大数据·人工智能·区块链
薛定谔的猫198243 分钟前
llama-index Embedding 落地到 RAG 系统
开发语言·人工智能·python·llama-index
gorgeous(๑>؂<๑)1 小时前
【西北工业大学-邢颖慧组-AAAI26】YOLO-IOD:实时增量目标检测
人工智能·yolo·目标检测·计算机视觉·目标跟踪
飞哥数智坊1 小时前
TRAE 国际版限免开启!一份给新手的入门说明书
人工智能·ai编程·trae
翱翔的苍鹰1 小时前
神经网络中损失函数(Loss Function)介绍
人工智能·深度学习·神经网络
狼爷1 小时前
【译】Skills 详解:Skills 与 prompts、Projects、MCP 和 subagents 的比较
人工智能·aigc
元智启1 小时前
企业AI应用面临“敏捷响应”难题:快速变化的业务与相对滞后的智能如何同步?
人工智能·深度学习·机器学习
ISACA中国2 小时前
2026年网络安全与AI趋势预测
人工智能·安全·web安全
lambo mercy2 小时前
自回归生成任务
人工智能·数据挖掘·回归
5Gcamera2 小时前
边缘计算视频分析智能AI盒子使用说明
人工智能·音视频·边缘计算