A 题国际旅游网络的大数据分析-详细解析与代码答案(2023 年全国高校数据统计与调查分析挑战赛

请你们进行数据统计与调查分析,使用附件中的数据,回答下列问题:

问题 1: 请进行分类汇总统计,计算不同国家 1995 年至 2020 年累计旅游总人数,从哪个国家旅游出发的人数最多,哪个国家旅游到达的人数最多?

思路 :直接利用pandas包的 函数对各个出发国家及到达国家的人数进行累加统计即可。

解题 :首先需要读取excel表格数据。

复制代码
import pandas as pd

import numpy as np

df=pd.read_csv('A题附件:国际旅游人数.csv')

df

接着依次统计各个国家出发和到达的总人数,并记录最大值,代码如下:

问题 2: 请任选一个国家,建立国家旅游出发人数的预测模型,基于该国家

1995 年至 2020 年的旅游出发人数,预测 2030 和 2050 年的旅游出发人数。

思路:不妨选择问题1中出发人数最多的美国(选择时最好选择年份数据较为齐全的国家),建立时间序列预测模型,较常见的模型选择有灰色模型、arima模型、holt模型等。

解题:通过数据筛选得到该国家的历年旅游数据,将数据储存在list中。

ARMIA模型

问题 3: 请进行数据统计,建立不同国家旅游的网络模型,分析哪两个国家 之间的旅游最为频繁?并分析这种频繁关系随时间的变化。

思路 :本题需要建立国家对,计算每个国家对之间的旅游人数总和,从而构建网络模型。每个节点即代表一个国家,每个边代表两个对应节点(国家)之间的旅游人次。最终输出网络关系图的邻接矩阵。

接着通过计算出的矩阵求出来往旅游人次最多的国家对即为最频繁的国家对。

依次求出该国家对历年的旅游人次,绘制折线图分析变化情况。

解题 :结合前述所求,计算网络模型的邻接矩阵:

复制代码
#代码请私戳获取

问题 4: 请分析附件中的数据,基于时间、旅游人数、旅游出发地和目的地, 你们还可以分析得出哪些结论,并进行数据的挖掘和可视化分析。

思路 :可以统计出历年出发国家以及到达国家的前若干名,分析哪些国家是热门旅游国家以及随着时间发生了怎样的变化。

可以分别统计若干热门出行国家的历年出行人数变化,分析各个国家出行人数随着时间发生了怎样的变化。

还可以计算出总体的各国旅游人数均值,统计出偏离均值较远的国家,结合实际分析出现这种偏离的原因。

详细解题步骤以及代码请私戳获取~

相关推荐
小徐敲java10 分钟前
python使用s7协议与plc进行数据通讯(HslCommunication模拟)
开发语言·python
猫头虎12 分钟前
如何解决 pip install 编译报错 fatal error: hdf5.h: No such file or directory(h5py)问题
人工智能·python·pycharm·开源·beautifulsoup·ai编程·pip
笨蛋少年派18 分钟前
跨境电商大数据分析系统案例:③建模、分析与暂时收尾
hive·数据挖掘·数据分析
p***233622 分钟前
python的sql解析库-sqlparse
数据库·python·sql
陈奕昆23 分钟前
n8n实战营Day3:电商订单全流程自动化·需求分析与流程拆解
大数据·开发语言·人工智能·自动化·需求分析·n8n
陈奕昆33 分钟前
n8n实战营Day1课时3:高频节点解析+Webhook表单同步Excel实操
人工智能·python·n8n
Cisyam^38 分钟前
openGauss + LangChain Agent实战:从自然语言到SQL的智能数据分析助手
sql·数据分析·langchain
深蓝电商API41 分钟前
动态 Token、加密参数逆向全流程:从原理到实战破解
爬虫·python
qq_17082750 CNC注塑机数采41 分钟前
【Python TensorFlow】 TCN-GRU时间序列卷积门控循环神经网络时序预测算法(附代码)
python·rnn·神经网络·机器学习·gru·tensorflow·tcn
java1234_小锋1 小时前
基于Python深度学习的车辆车牌识别系统(PyTorch2卷积神经网络CNN+OpenCV4实现)视频教程 - 切割车牌矩阵获取车牌字符
python·深度学习·cnn·车牌识别