数据分析 | Boosting与Bagging的区别

Boosting与Bagging的区别

Bagging思想专注于降低方差,操作起来较为简单,而Boosting思想专注于降低整体偏差来降低泛化误差,在模型效果方面的突出表现制霸整个弱分类器集成的领域。具体区别体现在如下五点:

  • 弱评估器:Bagging相互独立、并行构建;Boosting相互关联,按照顺序依次构建,先建弱分类器的效果影响后续模型的建立

  • 建树前的抽样方式:Bagging和Boosting都是样本有放回抽样和特征无放回抽样;但Boosting先建弱分类器的预测效果可能影响抽样细节

  • 集成的结果:Bagging对回归进行平均,对分类取众数,即少数服从多数;Boosting每个算法都有自己独特的规则,一般表现为某种分数的加权平均和使用输出函数进行分类,如sigmoid和softmax函数

  • 目标:Bagging降低方差来提高模型整体的稳定性来提高泛化能力;Boosting降低偏差提高模型整体的精度来提高泛化能力,众多弱分类器叠加后可以等同于强学习器

  • 单个评估器效力较弱时:Bagging可能失效,需要单个评估器准确率大于50%;Boosting则大概率会提升模型表现

如果说Bagging不同算法之间的核心区别在于靠以不同方式实现随机性,那Bosting的不同算法之间的核心区别就在于上一个弱评估器的评估结果具体如何影响下一个弱评估器的建立过程。

相关推荐
电鱼智能的电小鱼3 小时前
基于电鱼 AI 工控机的智慧工地视频智能分析方案——边缘端AI检测,实现无人值守下的实时安全预警
网络·人工智能·嵌入式硬件·算法·安全·音视频
孫治AllenSun4 小时前
【算法】图相关算法和递归
windows·python·算法
格图素书4 小时前
数学建模算法案例精讲500篇-【数学建模】DBSCAN聚类算法
算法·数据挖掘·聚类
DashVector5 小时前
向量检索服务 DashVector产品计费
数据库·数据仓库·人工智能·算法·向量检索
AI纪元故事会5 小时前
【计算机视觉目标检测算法对比:R-CNN、YOLO与SSD全面解析】
人工智能·算法·目标检测·计算机视觉
夏鹏今天学习了吗6 小时前
【LeetCode热题100(59/100)】分割回文串
算法·leetcode·深度优先
卡提西亚6 小时前
C++笔记-10-循环语句
c++·笔记·算法
还是码字踏实6 小时前
基础数据结构之数组的双指针技巧之对撞指针(两端向中间):三数之和(LeetCode 15 中等题)
数据结构·算法·leetcode·双指针·对撞指针
Khunkin6 小时前
牛顿迭代法:用几何直觉理解方程求根
机器学习
音视频牛哥7 小时前
超清≠清晰:视频系统里的分辨率陷阱与秩序真相
人工智能·机器学习·计算机视觉·音视频·大牛直播sdk·rtsp播放器rtmp播放器·smartmediakit