LeetCode 面试题 01.08. 零矩阵

文章目录

一、题目

编写一种算法,若M × N矩阵中某个元素为0,则将其所在的行与列清零。

点击此处跳转题目

示例 1:

输入:

\[1,1,1\], \[1,0,1\], \[1,1,1

]

输出:

\[1,0,1\], \[0,0,0\], \[1,0,1

]

示例 2:

输入:

\[0,1,2,0\], \[3,4,5,2\], \[1,3,1,5

]

输出:

\[0,0,0,0\], \[0,4,5,0\], \[0,3,1,0

]

二、C# 题解

此题有很多方法解,无外乎都是记录需要清零的行与列,这种写法太无聊了。这里提出一种递归的方式,只需要遍历矩阵一次即可。当遇到 0 时,使用 set0 变量记录该位置,遍历完成后,重置所有 set0

csharp 复制代码
public class Solution {
    public void SetZeroes(int[][] matrix) {
        BFS(ref matrix, 0, 0); // 广度优先遍历
    }

    public void BFS(ref int[][] matrix, int i, int j) {
        int m = matrix.Length, n = matrix[0].Length;

        if (i == m && j == 0) return; // 递归出口

        // 计算下一个位置
        int next_i = i, next_j = j + 1;
        if (next_j == n) {
            next_j = 0;
            next_i++;
        }

        bool set0 = matrix[i][j] == 0;   // 记录当前状态,是否需要清零

        BFS(ref matrix, next_i, next_j); // 继续遍历

        // 最后执行清零
        if (set0) {
            for (int p = 0; p < n; p++) matrix[i][p] = 0;
            for (int q = 0; q < m; q++) matrix[q][j] = 0;
        }
    }
}
  • 时间复杂度: O ( m × n ) O(m\times n) O(m×n)。
  • 空间复杂度:由矩阵中 0 出现的次数决定。

该方法依据元素记录,因此当矩阵中 0 出现次数过多时,会有重复操作,只适合处理稀疏 0 矩阵。

矩阵中 0 过于密集时,使用记录行列的方式会更好些,但可能需要更多的空间和遍历次数。

相关推荐
AndrewHZ3 分钟前
【图像处理基石】图像处理的基础理论体系介绍
图像处理·人工智能·算法·计算机视觉·cv·理论体系
周杰伦fans38 分钟前
[特殊字符] 代理模式超详细讲解 ——.NET
数据库·c#·代理模式
用户8356290780511 小时前
C# 高效生成 Word 表格:复杂表格创建实战指南
后端·c#
屠夫1 小时前
C# LINQ
c#
稚辉君.MCA_P8_Java2 小时前
Gemini永久会员 Java实现的暴力递归版本
java·数据结构·算法
冯诺依曼的锦鲤2 小时前
算法练习:差分
c++·学习·算法
有意义2 小时前
栈数据结构全解析:从实现原理到 LeetCode 实战
javascript·算法·编程语言
鹿鹿鹿鹿isNotDefined2 小时前
逐步手写,实现符合 Promise A+ 规范的 Promise
前端·javascript·算法
封奚泽优3 小时前
下降算法(Python实现)
开发语言·python·算法
im_AMBER3 小时前
算法笔记 16 二分搜索算法
c++·笔记·学习·算法