gradio使用transformer模块demo介绍2:Images & Computer Vision

文章目录

        • [图像分类 Image Classification](#图像分类 Image Classification)
        • [图像分割 Image Segmentation](#图像分割 Image Segmentation)
        • [图像风格变换 Image Transformation with AnimeGAN](#图像风格变换 Image Transformation with AnimeGAN)
        • [3D模型 3D models](#3D模型 3D models)

图像分类 Image Classification

python 复制代码
import gradio as gr
import torch
import requests
from torchvision import transforms

model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True).eval()
response = requests.get("https://git.io/JJkYN")
labels = response.text.split("\n")

def predict(inp):
  inp = transforms.ToTensor()(inp).unsqueeze(0)
  with torch.no_grad():
    prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
    confidences = {labels[i]: float(prediction[i]) for i in range(1000)}    
  return confidences

demo = gr.Interface(fn=predict, 
             inputs=gr.inputs.Image(type="pil"),
             outputs=gr.outputs.Label(num_top_classes=3),
             examples=[["cheetah.jpg"]],
             )
             
demo.launch()

图像分割 Image Segmentation

python 复制代码
import gradio as gr
from transformers import pipeline

generator = pipeline('text-generation', model='gpt2')

def generate(text):
    result = generator(text, max_length=30, num_return_sequences=1)
    return result[0]["generated_text"]

examples = [
    ["The Moon's orbit around Earth has"],
    ["The smooth Borealis basin in the Northern Hemisphere covers 40%"],
]

demo = gr.Interface(
    fn=generate,
    inputs=gr.inputs.Textbox(lines=5, label="Input Text"),
    outputs=gr.outputs.Textbox(label="Generated Text"),
    examples=examples
)

demo.launch()

图像风格变换 Image Transformation with AnimeGAN

python 复制代码
import gradio as gr
import torch

model2 = torch.hub.load(
    "AK391/animegan2-pytorch:main",
    "generator",
    pretrained=True,
    progress=False
)
model1 = torch.hub.load("AK391/animegan2-pytorch:main", "generator", pretrained="face_paint_512_v1")
face2paint = torch.hub.load(
    'AK391/animegan2-pytorch:main', 'face2paint', 
    size=512,side_by_side=False
)

def inference(img, ver):
    if ver == 'version 2 (🔺 robustness,🔻 stylization)':
        out = face2paint(model2, img)
    else:
        out = face2paint(model1, img)
    return out

title = "AnimeGANv2"
description = "Gradio Demo for AnimeGanv2 Face Portrait. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below. Please use a cropped portrait picture for best results similar to the examples below."
article = "<p style='text-align: center'><a href='https://github.com/bryandlee/animegan2-pytorch' target='_blank'>Github Repo Pytorch</a></p> <center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_animegan' alt='visitor badge'></center></p>"
examples=[['groot.jpeg','version 2 (🔺 robustness,🔻 stylization)'],['gongyoo.jpeg','version 1 (🔺 stylization, 🔻 robustness)']]

demo = gr.Interface(
    fn=inference, 
    inputs=[gr.inputs.Image(type="pil"),gr.inputs.Radio(['version 1 (🔺 stylization, 🔻 robustness)','version 2 (🔺 robustness,🔻 stylization)'], type="value", default='version 2 (🔺 robustness,🔻 stylization)', label='version')], 
    outputs=gr.outputs.Image(type="pil"),
    title=title,
    description=description,
    article=article,
    examples=examples)

demo.launch()

3D模型 3D models

python 复制代码
import gradio as gr
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
import torch
import numpy as np
from PIL import Image
import open3d as o3d
from pathlib import Path

feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")

def process_image(image_path):
    image_path = Path(image_path)
    image_raw = Image.open(image_path)
    image = image_raw.resize(
        (800, int(800 * image_raw.size[1] / image_raw.size[0])),
        Image.Resampling.LANCZOS)

    # prepare image for the model
    encoding = feature_extractor(image, return_tensors="pt")

    # forward pass
    with torch.no_grad():
        outputs = model(**encoding)
        predicted_depth = outputs.predicted_depth

    # interpolate to original size
    prediction = torch.nn.functional.interpolate(
        predicted_depth.unsqueeze(1),
        size=image.size[::-1],
        mode="bicubic",
        align_corners=False,
    ).squeeze()
    output = prediction.cpu().numpy()
    depth_image = (output * 255 / np.max(output)).astype('uint8')
    try:
        gltf_path = create_3d_obj(np.array(image), depth_image, image_path)
        img = Image.fromarray(depth_image)
        return [img, gltf_path, gltf_path]
    except Exception:
        gltf_path = create_3d_obj(
            np.array(image), depth_image, image_path, depth=8)
        img = Image.fromarray(depth_image)
        return [img, gltf_path, gltf_path]
    except:
        print("Error reconstructing 3D model")
        raise Exception("Error reconstructing 3D model")


def create_3d_obj(rgb_image, depth_image, image_path, depth=10):
    depth_o3d = o3d.geometry.Image(depth_image)
    image_o3d = o3d.geometry.Image(rgb_image)
    rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
        image_o3d, depth_o3d, convert_rgb_to_intensity=False)
    w = int(depth_image.shape[1])
    h = int(depth_image.shape[0])

    camera_intrinsic = o3d.camera.PinholeCameraIntrinsic()
    camera_intrinsic.set_intrinsics(w, h, 500, 500, w/2, h/2)

    pcd = o3d.geometry.PointCloud.create_from_rgbd_image(
        rgbd_image, camera_intrinsic)

    print('normals')
    pcd.normals = o3d.utility.Vector3dVector(
        np.zeros((1, 3)))  # invalidate existing normals
    pcd.estimate_normals(
        search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=30))
    pcd.orient_normals_towards_camera_location(
        camera_location=np.array([0., 0., 1000.]))
    pcd.transform([[1, 0, 0, 0],
                   [0, -1, 0, 0],
                   [0, 0, -1, 0],
                   [0, 0, 0, 1]])
    pcd.transform([[-1, 0, 0, 0],
                   [0, 1, 0, 0],
                   [0, 0, 1, 0],
                   [0, 0, 0, 1]])

    print('run Poisson surface reconstruction')
    with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Debug):
        mesh_raw, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
            pcd, depth=depth, width=0, scale=1.1, linear_fit=True)

    voxel_size = max(mesh_raw.get_max_bound() - mesh_raw.get_min_bound()) / 256
    print(f'voxel_size = {voxel_size:e}')
    mesh = mesh_raw.simplify_vertex_clustering(
        voxel_size=voxel_size,
        contraction=o3d.geometry.SimplificationContraction.Average)

    # vertices_to_remove = densities < np.quantile(densities, 0.001)
    # mesh.remove_vertices_by_mask(vertices_to_remove)
    bbox = pcd.get_axis_aligned_bounding_box()
    mesh_crop = mesh.crop(bbox)
    gltf_path = f'./{image_path.stem}.gltf'
    o3d.io.write_triangle_mesh(
        gltf_path, mesh_crop, write_triangle_uvs=True)
    return gltf_path

title = "Demo: zero-shot depth estimation with DPT + 3D Point Cloud"
description = "This demo is a variation from the original <a href='https://huggingface.co/spaces/nielsr/dpt-depth-estimation' target='_blank'>DPT Demo</a>. It uses the DPT model to predict the depth of an image and then uses 3D Point Cloud to create a 3D object."
examples = [["examples/1-jonathan-borba-CgWTqYxHEkg-unsplash.jpg"]]

iface = gr.Interface(fn=process_image,
                     inputs=[gr.Image(
                         type="filepath", label="Input Image")],
                     outputs=[gr.Image(label="predicted depth", type="pil"),
                              gr.Model3D(label="3d mesh reconstruction", clear_color=[
                                                 1.0, 1.0, 1.0, 1.0]),
                              gr.File(label="3d gLTF")],
                     title=title,
                     description=description,
                     examples=examples,
                     allow_flagging="never",
                     cache_examples=False)

iface.launch(debug=True, enable_queue=False)
相关推荐
张小九9917 分钟前
Foldseek快速蛋白质结构比对
人工智能
云卓SKYDROID1 小时前
无人机延时模块技术难点解析
人工智能·无人机·高科技·云卓科技·延迟摄像
神齐的小马2 小时前
机器学习 [白板推导](十三)[条件随机场]
人工智能·机器学习
荼蘼2 小时前
CUDA安装,pytorch库安装
人工智能·pytorch·python
墨风如雪2 小时前
问小白o4:AI的“头脑风暴”时代来了!
aigc
@Wufan2 小时前
【机器学习】7 Linear regression
人工智能·机器学习·线性回归
cxr8283 小时前
自动化知识工作AI代理的工程与产品实现
运维·人工智能·自动化
whaosoft-1433 小时前
51c自动驾驶~合集18
人工智能
即兴小索奇3 小时前
2025年AI Agent规模化落地:企业级市场年增超60%,重构商业作业流程新路径
人工智能·ai·商业·ai商业洞察·即兴小索奇
ReedFoley3 小时前
【笔记】动手学Ollama 第七章 应用案例1 搭建本地AI Copilot编程助手
人工智能·笔记·copilot