gradio使用transformer模块demo介绍2:Images & Computer Vision

文章目录

        • [图像分类 Image Classification](#图像分类 Image Classification)
        • [图像分割 Image Segmentation](#图像分割 Image Segmentation)
        • [图像风格变换 Image Transformation with AnimeGAN](#图像风格变换 Image Transformation with AnimeGAN)
        • [3D模型 3D models](#3D模型 3D models)

图像分类 Image Classification

python 复制代码
import gradio as gr
import torch
import requests
from torchvision import transforms

model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True).eval()
response = requests.get("https://git.io/JJkYN")
labels = response.text.split("\n")

def predict(inp):
  inp = transforms.ToTensor()(inp).unsqueeze(0)
  with torch.no_grad():
    prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
    confidences = {labels[i]: float(prediction[i]) for i in range(1000)}    
  return confidences

demo = gr.Interface(fn=predict, 
             inputs=gr.inputs.Image(type="pil"),
             outputs=gr.outputs.Label(num_top_classes=3),
             examples=[["cheetah.jpg"]],
             )
             
demo.launch()

图像分割 Image Segmentation

python 复制代码
import gradio as gr
from transformers import pipeline

generator = pipeline('text-generation', model='gpt2')

def generate(text):
    result = generator(text, max_length=30, num_return_sequences=1)
    return result[0]["generated_text"]

examples = [
    ["The Moon's orbit around Earth has"],
    ["The smooth Borealis basin in the Northern Hemisphere covers 40%"],
]

demo = gr.Interface(
    fn=generate,
    inputs=gr.inputs.Textbox(lines=5, label="Input Text"),
    outputs=gr.outputs.Textbox(label="Generated Text"),
    examples=examples
)

demo.launch()

图像风格变换 Image Transformation with AnimeGAN

python 复制代码
import gradio as gr
import torch

model2 = torch.hub.load(
    "AK391/animegan2-pytorch:main",
    "generator",
    pretrained=True,
    progress=False
)
model1 = torch.hub.load("AK391/animegan2-pytorch:main", "generator", pretrained="face_paint_512_v1")
face2paint = torch.hub.load(
    'AK391/animegan2-pytorch:main', 'face2paint', 
    size=512,side_by_side=False
)

def inference(img, ver):
    if ver == 'version 2 (🔺 robustness,🔻 stylization)':
        out = face2paint(model2, img)
    else:
        out = face2paint(model1, img)
    return out

title = "AnimeGANv2"
description = "Gradio Demo for AnimeGanv2 Face Portrait. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below. Please use a cropped portrait picture for best results similar to the examples below."
article = "<p style='text-align: center'><a href='https://github.com/bryandlee/animegan2-pytorch' target='_blank'>Github Repo Pytorch</a></p> <center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_animegan' alt='visitor badge'></center></p>"
examples=[['groot.jpeg','version 2 (🔺 robustness,🔻 stylization)'],['gongyoo.jpeg','version 1 (🔺 stylization, 🔻 robustness)']]

demo = gr.Interface(
    fn=inference, 
    inputs=[gr.inputs.Image(type="pil"),gr.inputs.Radio(['version 1 (🔺 stylization, 🔻 robustness)','version 2 (🔺 robustness,🔻 stylization)'], type="value", default='version 2 (🔺 robustness,🔻 stylization)', label='version')], 
    outputs=gr.outputs.Image(type="pil"),
    title=title,
    description=description,
    article=article,
    examples=examples)

demo.launch()

3D模型 3D models

python 复制代码
import gradio as gr
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
import torch
import numpy as np
from PIL import Image
import open3d as o3d
from pathlib import Path

feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")

def process_image(image_path):
    image_path = Path(image_path)
    image_raw = Image.open(image_path)
    image = image_raw.resize(
        (800, int(800 * image_raw.size[1] / image_raw.size[0])),
        Image.Resampling.LANCZOS)

    # prepare image for the model
    encoding = feature_extractor(image, return_tensors="pt")

    # forward pass
    with torch.no_grad():
        outputs = model(**encoding)
        predicted_depth = outputs.predicted_depth

    # interpolate to original size
    prediction = torch.nn.functional.interpolate(
        predicted_depth.unsqueeze(1),
        size=image.size[::-1],
        mode="bicubic",
        align_corners=False,
    ).squeeze()
    output = prediction.cpu().numpy()
    depth_image = (output * 255 / np.max(output)).astype('uint8')
    try:
        gltf_path = create_3d_obj(np.array(image), depth_image, image_path)
        img = Image.fromarray(depth_image)
        return [img, gltf_path, gltf_path]
    except Exception:
        gltf_path = create_3d_obj(
            np.array(image), depth_image, image_path, depth=8)
        img = Image.fromarray(depth_image)
        return [img, gltf_path, gltf_path]
    except:
        print("Error reconstructing 3D model")
        raise Exception("Error reconstructing 3D model")


def create_3d_obj(rgb_image, depth_image, image_path, depth=10):
    depth_o3d = o3d.geometry.Image(depth_image)
    image_o3d = o3d.geometry.Image(rgb_image)
    rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
        image_o3d, depth_o3d, convert_rgb_to_intensity=False)
    w = int(depth_image.shape[1])
    h = int(depth_image.shape[0])

    camera_intrinsic = o3d.camera.PinholeCameraIntrinsic()
    camera_intrinsic.set_intrinsics(w, h, 500, 500, w/2, h/2)

    pcd = o3d.geometry.PointCloud.create_from_rgbd_image(
        rgbd_image, camera_intrinsic)

    print('normals')
    pcd.normals = o3d.utility.Vector3dVector(
        np.zeros((1, 3)))  # invalidate existing normals
    pcd.estimate_normals(
        search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=30))
    pcd.orient_normals_towards_camera_location(
        camera_location=np.array([0., 0., 1000.]))
    pcd.transform([[1, 0, 0, 0],
                   [0, -1, 0, 0],
                   [0, 0, -1, 0],
                   [0, 0, 0, 1]])
    pcd.transform([[-1, 0, 0, 0],
                   [0, 1, 0, 0],
                   [0, 0, 1, 0],
                   [0, 0, 0, 1]])

    print('run Poisson surface reconstruction')
    with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Debug):
        mesh_raw, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
            pcd, depth=depth, width=0, scale=1.1, linear_fit=True)

    voxel_size = max(mesh_raw.get_max_bound() - mesh_raw.get_min_bound()) / 256
    print(f'voxel_size = {voxel_size:e}')
    mesh = mesh_raw.simplify_vertex_clustering(
        voxel_size=voxel_size,
        contraction=o3d.geometry.SimplificationContraction.Average)

    # vertices_to_remove = densities < np.quantile(densities, 0.001)
    # mesh.remove_vertices_by_mask(vertices_to_remove)
    bbox = pcd.get_axis_aligned_bounding_box()
    mesh_crop = mesh.crop(bbox)
    gltf_path = f'./{image_path.stem}.gltf'
    o3d.io.write_triangle_mesh(
        gltf_path, mesh_crop, write_triangle_uvs=True)
    return gltf_path

title = "Demo: zero-shot depth estimation with DPT + 3D Point Cloud"
description = "This demo is a variation from the original <a href='https://huggingface.co/spaces/nielsr/dpt-depth-estimation' target='_blank'>DPT Demo</a>. It uses the DPT model to predict the depth of an image and then uses 3D Point Cloud to create a 3D object."
examples = [["examples/1-jonathan-borba-CgWTqYxHEkg-unsplash.jpg"]]

iface = gr.Interface(fn=process_image,
                     inputs=[gr.Image(
                         type="filepath", label="Input Image")],
                     outputs=[gr.Image(label="predicted depth", type="pil"),
                              gr.Model3D(label="3d mesh reconstruction", clear_color=[
                                                 1.0, 1.0, 1.0, 1.0]),
                              gr.File(label="3d gLTF")],
                     title=title,
                     description=description,
                     examples=examples,
                     allow_flagging="never",
                     cache_examples=False)

iface.launch(debug=True, enable_queue=False)
相关推荐
Matrix_115 分钟前
论文阅读:Matting by Generation
论文阅读·人工智能·计算摄影
一叶知秋秋14 分钟前
python学习day39
人工智能·深度学习·学习
小马虎本人18 分钟前
如果接口返回的数据特别慢?要怎么办?难道就要在当前页面一直等吗
前端·react.js·aigc
Ai多利18 分钟前
深度学习登上Nature子刊!特征选择创新思路
人工智能·算法·计算机视觉·多模态·特征选择
几道之旅20 分钟前
MCP(Model Context Protocol)与提示词撰写
人工智能
weixin_4487816223 分钟前
DenseNet算法 实现乳腺癌识别
pytorch·深度学习·神经网络
Spider_Man27 分钟前
“AI查用户”也能这么简单?手把手带你用Node.js+前端玩转DeepSeek!
javascript·人工智能·node.js
T.D.C42 分钟前
【OpenCV】使用opencv找哈士奇的脸
人工智能·opencv·计算机视觉
大霸王龙1 小时前
软件工程的软件生命周期通常分为以下主要阶段
大数据·人工智能·旅游
一只爱撸猫的程序猿1 小时前
构建一个简单的智能文档问答系统实例
数据库·spring boot·aigc