LLMs参考资料第一周以及BloombergGPT特定领域的训练 Domain-specific training: BloombergGPT

1. 第1周资源

以下是本周视频中讨论的研究论文的链接。您不需要理解这些论文中讨论的所有技术细节 - 您已经看到了您需要回答讲座视频中的测验的最重要的要点。

然而,如果您想更仔细地查看原始研究,您可以通过以下链接阅读这些论文和文章。

1.1 Transformer架构

  • 本文介绍了Transformer架构,以及核心的"自注意力"机制。这篇文章是LLMs的基础。
  • BLOOM是一个开源的LLM,拥有176B的参数(类似于GPT-4),以开放透明的方式进行训练。在这篇论文中,作者详细讨论了用于训练模型的数据集和过程。您还可以在这里查看模型的高级概述
  • DeepLearning.AI的自然语言处理专项课程系列课程,讨论了向量空间模型的基础及其在语言建模中的应用。

1.2 预训练和缩放法则

  • OpenAI的研究人员进行的实证研究,探索了大型语言模型的缩放法则。

1.3 模型架构和预训练目标

  • 本文研究了大型预训练语言模型中的建模选择,并确定了零射击泛化的最佳方法。
  • 使用HuggingFace库处理各种机器学习任务的资源集合。
  • Meta AI提出的高效LLMs文章(他们的13 Billion模型在大多数基准测试上的性能超过了拥有175Billion参数的GPT3)

1.4 缩放法则和计算最佳模型

  • 本文研究了大型语言模型中少射击学习的潜力。
  • DeepMind的研究,评估训练LLMs的最佳模型大小和令牌数量。也被称为"Chinchilla论文"。
  • 专门为金融领域训练的LLM,是一个试图遵循chinchilla法则的好例子。

2. BloombergGPT

BloombergGPT是由Bloomberg开发的大型仅解码器语言模型。它使用了包括新闻文章、报告和市场数据在内的广泛金融数据集进行预训练,以增强其对金融的理解,并使其能够生成与金融相关的自然语言文本。数据集在上面的图片中显示。

在BloombergGPT的训练过程中,作者使用了Chinchilla缩放法则来指导模型中的参数数量和训练数据的量,以令牌为单位进行测量。Chinchilla的建议由图片中的Chinchilla-1、Chinchilla-2和Chinchilla-3线表示,我们可以看到BloombergGPT与其非常接近。

尽管团队可用的训练计算预算的推荐配置是500亿参数和1.4万亿令牌,但在金融领域获得1.4万亿令牌的训练数据证明是具有挑战性的。因此,他们构建了一个只包含7000亿令牌的数据集,少于计算最佳值。此外,由于提前停止,训练过程在处理5690亿令牌后终止。

BloombergGPT项目是一个很好的例子,说明了如何为增加领域特异性进行模型预训练,以及可能迫使您在计算最佳模型和训练配置之间做出权衡的挑战。

您可以在这里阅读BloombergGPT的文章

参考

相关推荐
星爷AG I11 分钟前
9-28 视觉工作记忆(AGI基础理论)
人工智能·计算机视觉·agi
陈天伟教授18 分钟前
人工智能应用- 语言理解:07.大语言模型
人工智能·深度学习·语言模型
岱宗夫up21 分钟前
机器学习:标准化流模型(NF)
人工智能·python·机器学习·生成对抗网络
程序猿阿伟22 分钟前
《游戏AI训练模拟环境:高保真可加速构建实战指南》
人工智能·游戏
花月mmc25 分钟前
CanMV K230 波形识别——整体部署(4)
人工智能·python·嵌入式硬件·深度学习·信号处理
tel_1821753976736 分钟前
AOI全自动视觉检测生活用纸表面缺陷检测
人工智能·视觉检测·生活
萝卜不爱吃萝卜、37 分钟前
智能体来了:从 0 到 1 搭建个人 AI 助手
人工智能
一休哥助手44 分钟前
2026年2月2日人工智能早间新闻
人工智能
爱吃泡芙的小白白1 小时前
CNN的FLOPs:从理论计算到实战避坑指南
人工智能·神经网络·cnn·flops
山居秋暝LS1 小时前
Padim模型参数
人工智能·机器学习