Hadoop、Spark与Flink的基础架构及其关系和优异

Hadoop、Spark与Flink的基础架构及其关系和优异

前言

Hadoop、Spark和Flink是目前重要的三大分布式计算系统。它们都可以用于大数据处理,但在处理方式和应用场景上有所不同。

Hadoop专为批处理而生,一次将大量数据集输入到输入中,进行处理并产生结果。它用于离线复杂的大数据处理。

Spark定义是一个批处理系统,但也支持流处理。它用于离线快速的大数据处理。

Flink为流和批处理提供了一个运行时。它用于在线实时的大数据处理。

这三个框架在不同的大数据处理场景当中,表现各有优势。因此,最好的方案就是将各自的优势结合起来,实现更高效率地完成大数据处理任务。

*注:
①在线与离线:在线大数据处理是指在应用程序由用户输入驱动时,需要及时响应用户的处理方式。例如,社交网络新闻提要、实时广告服务器、分析工具和CRM应用程序都属于在线大数据处理的范畴。离线大数据处理是指在没有承诺响应用户的情况下进行的处理方式。离线大数据处理提供了对大量数据进行转换、管理或分析的能力。
②批处理与流处理:批处理是指在数据被收集完成后再进行处理。这种方式适用于离线复杂的大数据处理,例如账单、客户订单、工资单等。批处理通常需要较长时间,更适合大量数据的处理。流处理是指实时地对数据进行处理,数据是分段发送到分析工具中的。这种方式适用于在线实时的大数据处理,例如欺诈检测、日志监控、客户行为分析和社交媒体分析等。流处理的延迟通常以秒或毫秒为单位,因为在流处理中,数据在到达磁盘之前会被分析。

Hadoop

基础架构

Hadoop是一个分布式计算系统,它由多个元素构成。最底层是Hadoop Distributed File System(HDFS),它存储Hadoop集群中所有存储节点上的文件。HDFS的上一层是MapReduce引擎,该引擎由JobTrackers和TaskTrackers组成。此外,Hadoop还包括YARN(Yet Another Resource Negotiator)资源管理器和Common库。

① HDFS:Hadoop Distributed File System(HDFS)是一种分布式文件系统,它能够在多个计算机之间存储大量数据。

② MapReduce:MapReduce是一种编程模型,用于处理大量数据。它将计算任务分解为多个小任务,分别在不同的计算节点上执行,然后将结果汇总起来。

③ YARN:YARN(Yet Another Resource Negotiator)是Hadoop的资源管理器,负责管理集群中的计算资源,并调度用户提交的作业。

④ Common:Common库包含了Hadoop所需的各种通用组件和工具,例如配置管理、日志记录和安全管理等。

这些组件共同构成了Hadoop这个强大的分布式计算系统。它们协同工作,能够处理海量数据,并提供高可靠性、高扩展性和高容错性等特性。

优点

① 高可靠性:Hadoop按位存储和处理数据的能力值得人们信赖。

② 高扩展性:Hadoop是在可用的计算机集簇间分配数据并完成计算任务的,这些集簇可以方便地扩展到数以千计的节点中。

③ 高效性:Hadoop能够在节点之间动态地移动数据,并保证各个节点的动态平衡,因此处理速度非常快。

④ 高容错性:Hadoop能够自动保存数据的多个副本,并且能够自动将失败的任务重新分配。

不足

① 所有的metadata操作都要通过集中式的NameNode来进行,NameNode有可能是性能的瓶颈。

② 单一NameNode、单一Jobtracker的设计严重制约了整个Hadoop可扩展性和可靠性。首先,NameNode和JobTracker是整个系统中明显的单点故障源。再次,单一NameNode的内存容量有限,使得Hadoop集群的节点数量被限制到2000个左右,能支持的文件系统大小被限制在10-50PB,最多能支持的文件数量大约为1.5亿左右。

③ 部分hadoop集群的NameNode重启需要数小时,这大大降低了系统的可用性。

④ 随着Hadoop被广泛使用,面对各式各样的需求,人们期望Hadoop能提供更多特性,比如完全可读写的文件系统、Snapshot、Mirror等等。这些都是当前版本的Hadoop不支持,但是用户又有强烈需求的。

Spark

基础架构

Apache Spark是一个围绕速度、易用性和复杂分析构建的大数据处理框架,最初在2009年由加州大学伯克利分校的AMPLab开发,并于2010年成为Apache的开源项目之一。Spark由SparkCore、Spark SQL、Spark Streaming、GraphX、MLlib等模块组成。

Spark运行架构包括集群资源管理器(Cluster Manager)、多个运行作业任务的工作结点(Worker Node)、每个应用的任务控制结点(Driver)和每个工作结点上负责具体任务的执行进程(Executor)。

① Cluster Manager:在Standalone模式中即为Master(主节点),控制整个集群,监控Worker。 在YARN模式中为资源管理器。

② Worker:从节点(子节点),负责控制计算节点,启动Executor或Driver。 在YARN模式中为NodeManager,负责计算节点的控制。

③ Driver:运行Appplication的main ()函数并创建SparkContext。

④ Executor:执行器,在worker node 上执行任务的组件,用于启动线程池运行任务。 每个Application拥有独立的一组Executors。

⑤ SparkContext:整个应用的上下文,控制应用的生命周期。

这些组件共同构成了Spark这个强大的分布式计算系统。它们协同工作,能够处理海量数据,并提供高可靠性、高扩展性和高容错性等特性。

优点

① 快速:Spark基于内存进行计算,能够极大地提高大数据处理速度。

② 易用:Spark支持多种语言,包括Java、Scala、Python和R,这使得更多的开发人员能够在自己熟悉的语言环境下进行工作。

③ 通用:Spark提供了多种技术组件,包括Spark RDD、Spark SQL、Spark Streaming、Spark MLlib和Spark GraphX,可以一站式地完成大数据领域的离线批处理、交互式查询、流式计算、机器学习和图计算等常见任务。

④ 随处运行:用户可以使用Spark的独立集群模式运行Spark,也可以在EC2(亚马逊弹性计算云)、Hadoop YARN或者Apache Mesos上运行Spark。并且可以从HDFS、Cassandra、HBase、Hive和任何分布式文件系统读取数据。

不足

① 学习曲线陡峭:相比于Hive,Spark的学习曲线更加陡峭,需要一定的编程基础和技能。

② 内存消耗高:由于使用内存计算引擎,因此需要更多的内存资源,相比于Hive更加消耗计算资源。

Flink

基础架构

Apache Flink是一个框架和分布式处理引擎,用于在无边界和有边界数据流上进行有状态的计算。Flink能够在所有常见的集群环境中运行,并能以内存速度和任意规模进行计算。Flink支持多种部署模式,包括独立部署、YARN部署、Mesos部署和Kubernetes部署。这些部署模式可以满足不同的应用场景和需求。

Flink的基础架构包括以下几个部分:

① JobManager:负责调度和协调整个Flink作业的执行。

② TaskManager:负责执行Flink作业中的具体任务。

③ Client:负责提交Flink作业到JobManager。

④ ResourceManager:负责管理集群中的资源。

优点

① 高吞吐量:Flink能够以高速度处理大量数据,满足实时数据处理的需求。

② 低延迟:Flink能够快速地对数据进行处理,减少数据处理的延迟。

③ 高性能:Flink能够在有界和无界数据流上进行有状态的计算,提供高性能的数据处理能力。

④ 灵活性:Flink支持多种部署模式,可以满足不同的应用场景和需求。

不足

① 学习曲线陡峭:与spark一样,相比于其他大数据处理框架,Flink的学习曲线更加陡峭,需要一定的编程基础和技能。

② 集成开发应用:在实际上的大数据平台应用当中,Flink也并非是完美的,作为计算引擎,Flink能满足绝大部分的数据处理需求,但是作为系统平台而言,Flink的缺点也是存在的,所以主流的趋势还是与其他平台例如Hadoop进行集成开发应用。

结语:大数据框架的选择

选择合适的大数据处理框架需要根据企业的实际需求来进行。不同的技术框架,在处理数据上各有优缺点。大数据处理框架通常可以分为三类------批处理框架、流处理框架和批处理+流处理框架。例如,Apache Hadoop是一个批处理框架,而Apache Storm和Apache Samza是流处理框架,Apache Spark和Apache Flink则是批处理+流处理框架。

在选择大数据处理框架时,需要考虑以下几个因素:

① 处理需求:根据企业的实际需求,选择适合的大数据处理框架。例如,如果企业需要对大量静态数据进行离线批处理分析,则可以选择Hadoop;如果企业需要对实时数据进行流式计算,则可以选择Storm或Samza;如果企业同时需要批处理和流处理,则可以选择Spark或Flink。

② 性能:不同的大数据处理框架在性能上有所差异,需要根据实际情况选择性能较好的框架。

③ 扩展性:大数据处理往往需要在集群环境中运行,因此需要选择具有良好扩展性的框架,以便在集群规模增加时能够快速扩展。

④ 兼容性:如果企业已经使用了某些大数据技术,例如Hadoop,则需要选择与现有技术兼容的框架。

总之,在选择大数据处理框架时,需要根据企业的实际需求、性能、扩展性和兼容性等因素进行综合考虑。

相关推荐
2501_943695332 小时前
高职大数据技术专业,怎么参与开源数据分析项目积累经验?
大数据·数据分析·开源
Dxy12393102163 小时前
别再让 ES 把你拖垮!5 个实战技巧让搜索性能提升 10 倍
大数据·elasticsearch·搜索引擎
2501_943695333 小时前
大专市场调查与统计分析专业,怎么辨别企业招聘的“画饼”岗位?
大数据
七夜zippoe4 小时前
CANN Runtime跨进程通信 共享设备上下文的IPC实现
大数据·cann
威胁猎人4 小时前
【黑产大数据】2025年全球电商业务欺诈风险研究报告
大数据
十月南城4 小时前
Hadoop基础认知——HDFS、YARN、MapReduce在现代体系中的位置与价值
hadoop·hdfs·mapreduce
L543414464 小时前
告别代码堆砌匠厂架构让你的系统吞吐量翻倍提升
大数据·人工智能·架构·自动化·rpa
证榜样呀4 小时前
2026 大专计算机专业必考证书推荐什么
大数据·前端
LLWZAI4 小时前
让朱雀AI检测无法判断的AI公众号文章,当创作者开始与算法「躲猫猫」
大数据·人工智能·深度学习
SickeyLee5 小时前
产品经理案例分析(五):电商产品后台设计:撑起前台体验的 “隐形支柱”
大数据