1. 卷积原理

① 卷积核不停的在原图上进行滑动,对应元素相乘再相加。

② 下图为每次滑动移动1格,然后再利用原图与卷积核上的数值进行计算得到缩略图矩阵的数据,如下图右所示。

python 复制代码
import torch
import torch.nn.functional as F

input = torch.tensor([[1, 2, 0, 3, 1],
                      [0, 1, 2, 3, 1],
                      [1, 2, 1, 0, 0],
                      [5, 2, 3, 1, 1],
                      [2, 1, 0, 1, 1]])

kernel = torch.tensor([[1, 2, 1],
                       [0, 1, 0],
                       [2, 1, 0]])

print(input.shape)
print(kernel.shape)
input = torch.reshape(input, (1,1,5,5))
kernel = torch.reshape(kernel, (1,1,3,3))
print(input.shape)
print(kernel.shape)

output = F.conv2d(input, kernel, stride=1)
print(output)

结果:

效果:

python 复制代码
import torch
import torch.nn.functional as F

input = torch.tensor([[1, 2, 0, 3, 1],
                      [0, 1, 2, 3, 1],
                      [1, 2, 1, 0, 0],
                      [5, 2, 3, 1, 1],
                      [2, 1, 0, 1, 1]])

kernel = torch.tensor([[1, 2, 1],
                       [0, 1, 0],
                       [2, 1, 0]])

print(input.shape)
print(kernel.shape)
input = torch.reshape(input, (1,1,5,5))
kernel = torch.reshape(kernel, (1,1,3,3))
print(input.shape)
print(kernel.shape)

output2 = F.conv2d(input, kernel, stride=2)  # 步伐为2
print(output2)

结果 :

python 复制代码
import torch
import torch.nn.functional as F

input = torch.tensor([[1, 2, 0, 3, 1],
                      [0, 1, 2, 3, 1],
                      [1, 2, 1, 0, 0],
                      [5, 2, 3, 1, 1],
                      [2, 1, 0, 1, 1]])

kernel = torch.tensor([[1, 2, 1],
                       [0, 1, 0],
                       [2, 1, 0]])

print(input.shape)
print(kernel.shape)
input = torch.reshape(input, (1,1,5,5))
kernel = torch.reshape(kernel, (1,1,3,3))
print(input.shape)
print(kernel.shape)

output3 = F.conv2d(input, kernel, stride=1, padding=1)  # 周围只填充一层
print(output3)

效果:

相关推荐
之墨_4 分钟前
【大语言模型】—— 自注意力机制及其变体(交叉注意力、因果注意力、多头注意力)的代码实现
人工智能·语言模型·自然语言处理
查士丁尼·绵24 分钟前
笔试-羊狼过河
python
摸鱼的老谭27 分钟前
构建Agent该选Python还是Java ?
java·python·agent
2301_8219199236 分钟前
深度学习(四)
pytorch·深度学习
从孑开始43 分钟前
ManySpeech.MoonshineAsr 使用指南
人工智能·ai·c#·.net·私有化部署·语音识别·onnx·asr·moonshine
涛涛讲AI1 小时前
一段音频多段字幕,让音频能够流畅自然对应字幕 AI生成视频,扣子生成剪映视频草稿
人工智能·音视频·语音识别
鄃鳕1 小时前
python 字典 列表 类比c++【python】
c++·python
可触的未来,发芽的智生1 小时前
新奇特:黑猫警长的纳米世界,忆阻器与神经网络的智慧
javascript·人工智能·python·神经网络·架构
程序员三藏1 小时前
Jmeter接口测试与压力测试
自动化测试·软件测试·python·测试工具·jmeter·接口测试·压力测试
WWZZ20252 小时前
快速上手大模型:机器学习2(一元线性回归、代价函数、梯度下降法)
人工智能·算法·机器学习·计算机视觉·机器人·大模型·slam