【深度学习】Pytorch训练过程中损失值出现NaN

项目场景

利用Pytorch框架,结合FEDformer开源代码(https://github.com/MAZiqing/FEDformer),将自己的数据集作为输入训练模型。

问题描述

训练过程中,发现打印出来的Train loss, Test loss, Test loss中,Test loss从第一个epoch开始就为nan。

输出中间结果后,发现第一个epoch训练到了第二个batch时,模型输出开始出现了nan。

原因分析

查阅了相关资料,有这样一些说法:

  • 梯度爆炸:batch size较大、学习率较大、数据特征之间值的差异较大
  • 数据本身有缺失值

之后针对数据的缺失值进行了统计,发现并没有缺失值。所以初步认为是发生了梯度爆炸。

随后我做了多组实验,观察每次epoch的每个batch的预测结果是否存在nan:

  • 对比实验a: 不断减小batch size
  • 对比实验b: 不断减小学习率
  • 对比实验c: 减少数据集特征的个数

最终发现,是数据集特征的问题。数据集的某个特征和其他特征数值差异较大,导致模型在反向传播计算梯度的时候计算出的梯度值过大,从而导致了梯度爆炸。

解决方案

经过理论分析,这一列特征对于实验结果的影响不会很大,故直接将这一列特征从数据中删除。之后的实验结果也表明确实是这一列的引入导致了模型训练出现了NaN。

总结

深度学习训练过程中损失值出现NaN的情况:

  • 梯度爆炸:batch size较大、学习率较大、数据特征之间值的差异较大
  • 数据本身有缺失值
相关推荐
酒酿小圆子~44 分钟前
NLP中常见的分词算法(BPE、WordPiece、Unigram、SentencePiece)
人工智能·算法·自然语言处理
新加坡内哥谈技术2 小时前
Virgo:增强慢思考推理能力的多模态大语言模型
人工智能·语言模型·自然语言处理
martian6652 小时前
深入详解人工智能计算机视觉之图像生成与增强:生成对抗网络(GAN)
人工智能·计算机视觉
qq_273900232 小时前
pytorch torch.isclose函数介绍
人工智能·pytorch·python
说私域2 小时前
阿里巴巴新零售模式下的创新实践:结合开源AI智能名片2+1链动模式S2B2C商城小程序的应用探索
人工智能·开源·零售
致Great3 小时前
《你的RAG出错了?快来Get这份改进秘籍》
人工智能·llm·nlp
这我可不懂3 小时前
2025低代码与人工智能AI新篇
人工智能·低代码
XianxinMao3 小时前
企业通过私有安全端点访问大型语言模型的益处
人工智能·安全·语言模型
itwangyang5203 小时前
AIDD-人工智能药物设计-可扩展!更快!更便宜!大规模基因组数据存储新结构
人工智能
生信与遗传解读3 小时前
XGBoost算法在自定义数据集中预测疾病风险
人工智能·python·算法·数据分析