【深度学习】Pytorch训练过程中损失值出现NaN

项目场景

利用Pytorch框架,结合FEDformer开源代码(https://github.com/MAZiqing/FEDformer),将自己的数据集作为输入训练模型。

问题描述

训练过程中,发现打印出来的Train loss, Test loss, Test loss中,Test loss从第一个epoch开始就为nan。

输出中间结果后,发现第一个epoch训练到了第二个batch时,模型输出开始出现了nan。

原因分析

查阅了相关资料,有这样一些说法:

  • 梯度爆炸:batch size较大、学习率较大、数据特征之间值的差异较大
  • 数据本身有缺失值

之后针对数据的缺失值进行了统计,发现并没有缺失值。所以初步认为是发生了梯度爆炸。

随后我做了多组实验,观察每次epoch的每个batch的预测结果是否存在nan:

  • 对比实验a: 不断减小batch size
  • 对比实验b: 不断减小学习率
  • 对比实验c: 减少数据集特征的个数

最终发现,是数据集特征的问题。数据集的某个特征和其他特征数值差异较大,导致模型在反向传播计算梯度的时候计算出的梯度值过大,从而导致了梯度爆炸。

解决方案

经过理论分析,这一列特征对于实验结果的影响不会很大,故直接将这一列特征从数据中删除。之后的实验结果也表明确实是这一列的引入导致了模型训练出现了NaN。

总结

深度学习训练过程中损失值出现NaN的情况:

  • 梯度爆炸:batch size较大、学习率较大、数据特征之间值的差异较大
  • 数据本身有缺失值
相关推荐
春日见3 小时前
丝滑快速拓展随机树 S-RRT(Smoothly RRT)算法核心原理与完整流程
人工智能·算法·机器学习·路径规划算法·s-rrt
陈文锦丫4 小时前
MixFormer: A Mixed CNN–Transformer Backbone
人工智能·cnn·transformer
小毅&Nora5 小时前
【人工智能】【AI外呼】系统架构设计与实现详解
人工智能·系统架构·ai外呼
jianqiang.xue6 小时前
别把 Scratch 当 “动画玩具”!图形化编程是算法思维的最佳启蒙
人工智能·算法·青少年编程·机器人·少儿编程
Coding茶水间7 小时前
基于深度学习的安全帽检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
weixin79893765432...7 小时前
Vue + Express + DeepSeek 实现一个简单的对话式 AI 应用
vue.js·人工智能·express
nju_spy7 小时前
ToT与ReAct:突破大模型推理能力瓶颈
人工智能·大模型·大模型推理·tot思维树·react推理行动·人工智能决策·ai推理引擎
AI-智能7 小时前
别啃文档了!3 分钟带小白跑完 Dify 全链路:从 0 到第一个 AI 工作流
人工智能·python·自然语言处理·llm·embedding·agent·rag
y***86698 小时前
C机器学习.NET生态库应用
人工智能·机器学习
deng12048 小时前
基于LeNet-5的图像分类小结
人工智能·分类·数据挖掘