【深度学习】Pytorch训练过程中损失值出现NaN

项目场景

利用Pytorch框架,结合FEDformer开源代码(https://github.com/MAZiqing/FEDformer),将自己的数据集作为输入训练模型。

问题描述

训练过程中,发现打印出来的Train loss, Test loss, Test loss中,Test loss从第一个epoch开始就为nan。

输出中间结果后,发现第一个epoch训练到了第二个batch时,模型输出开始出现了nan。

原因分析

查阅了相关资料,有这样一些说法:

  • 梯度爆炸:batch size较大、学习率较大、数据特征之间值的差异较大
  • 数据本身有缺失值

之后针对数据的缺失值进行了统计,发现并没有缺失值。所以初步认为是发生了梯度爆炸。

随后我做了多组实验,观察每次epoch的每个batch的预测结果是否存在nan:

  • 对比实验a: 不断减小batch size
  • 对比实验b: 不断减小学习率
  • 对比实验c: 减少数据集特征的个数

最终发现,是数据集特征的问题。数据集的某个特征和其他特征数值差异较大,导致模型在反向传播计算梯度的时候计算出的梯度值过大,从而导致了梯度爆炸。

解决方案

经过理论分析,这一列特征对于实验结果的影响不会很大,故直接将这一列特征从数据中删除。之后的实验结果也表明确实是这一列的引入导致了模型训练出现了NaN。

总结

深度学习训练过程中损失值出现NaN的情况:

  • 梯度爆炸:batch size较大、学习率较大、数据特征之间值的差异较大
  • 数据本身有缺失值
相关推荐
gorgeous(๑>؂<๑)16 小时前
【北理工-AAAI26】MODA:首个无人机多光谱目标检测数据集
人工智能·目标检测·计算机视觉·目标跟踪·无人机
嵌入式的飞鱼17 小时前
SD NAND 焊接避坑指南:LGA-8 封装手工焊接技巧与常见错误
人工智能·stm32·单片机·嵌入式硬件·tf卡
serve the people17 小时前
tensorflow 零基础吃透:RaggedTensor 与其他张量类型的转换
人工智能·tensorflow·neo4j
serve the people17 小时前
tensorflow 核心解析:tf.RaggedTensorSpec 作用与参数说明
人工智能·python·tensorflow
yzx99101317 小时前
当AI握住方向盘:智能驾驶如何重新定义出行未来
人工智能
Sui_Network18 小时前
备受期待的 POP 射击游戏 XOCIETY 正式在 Epic Games Store 开启体验
人工智能·游戏·rpc·区块链·量子计算·graphql
漫长的~以后18 小时前
GPT-5.2深度拆解:多档位自适应架构如何重塑AI推理效率
人工智能·gpt·架构
爱笑的眼睛1118 小时前
自动机器学习组件的深度解析:超越AutoML框架的底层架构
java·人工智能·python·ai
LCG米18 小时前
嵌入式Python工业环境监测实战:MicroPython读取多传感器数据
开发语言·人工智能·python
努力的BigJiang18 小时前
Cube-slam复现及报错解决
人工智能