opencv 进阶15-检测DoG特征并提取SIFT描述符cv2.SIFT_create()

前面我们已经了解了Harris函数来进行角点检测,因为角点的特性,这些角点在图像旋转的时候也可以被检测到。但是,如果我们放大或缩小图像时,就可能会丢失图像的某些部分,甚至有可能增加角点的质量。这种损失的现象需要一种与图像比例无关的角点检测方法来解决。

SIFT(Scale-Invariant Feature Transform)尺度不变特征变换可以解决这个问题。

注意: SIFT 并不检测关键点(关键点由Difference of Gaussians检测),SIFT会通过一个特征向量来描述关键点周围区域的情况。DoG操作的最终结果会得到感兴趣的区域(关键点),这将通过SIFT来进行说明。

函数说明:

sift =cv2.SIFT_create([, nfeatures[, nOctaveLayers[,

contrastThreshold[, edgeThreshold]]]])

参数

  • nfeatures: 保留的最佳功能的数量。这些特征按其分数排名(在SIFT算法中作为局部对比度测量)。

  • nOctaveLayers:每个八度中的层数。3是D.Lowe(原作者)论文中使用的值。八度的数量是根据图像分辨率自动计算的。

  • contrastThreshold:用于过滤掉半均匀(低对比度)区域中的弱特征的对比度阈值。阈值越大,检测器产生的特征越少。应用过滤时,对比度阈值将被nOctaveLayers除。当nOctaveLayers设置为默认值并且如果要使用D.Lowe论文中使用的值0.03时,请将此参数设置为0.09。

  • edgeThreshold:用于过滤边缘特征的阈值。请注意,其含义与contrastThreshold不同,即edgeThreshold越大,滤除的特征越少(保留的特征越多)。

返回值

  • sift:实例化一个sift特征检测器。

示例:对图像检测DoG特征并提取SIFT描述符

实验原图:

cpp 复制代码
import cv2
import numpy as np

img = cv2.imread('images\\sumian.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

sift = cv2.xfeatures2d.SIFT_create()
keypoints, descriptor = sift.detectAndCompute(gray, None)

img = cv2.drawKeypoints(image= img, outImage= img, keypoints= keypoints, flags= cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS, color= (0, 0, 255))

cv2.imshow('sift', img)
cv2.waitKey()
cv2.destroyAllWindows()

发现是,如果你沿用之前的代码即

descriptor = cv2.xfeatures2d.SIFT_create()

会出现一个warning,但不影响结果。

cpp 复制代码
[ WARN:0@0.037] global shadow_sift.hpp:15 cv::xfeatures2d::SIFT_create DEPRECATED: cv.xfeatures2d.SIFT_create() is deprecated due SIFT tranfer to the main repository. https://github.com/opencv/opencv/issues/16736

这是因为新版本的SIFT可以直接引用,不再需要安装contrib包,即

descriptor = cv2.SIFT_create()

官方公告可参见 OpenCV Google Summer of Code 2020

新代码如下:

cpp 复制代码
import cv2


img = cv2.imread('images\\sumiao.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#sift = cv2.xfeatures2d.SIFT_create()
sift = cv2.SIFT_create()
keypoints, descriptor = sift.detectAndCompute(gray, None)

img = cv2.drawKeypoints(image= img, outImage= img, keypoints= keypoints, flags= cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS, color= (0, 0, 255))

cv2.imshow('sift', img)
cv2.waitKey()
cv2.destroyAllWindows()

运行效果:

相关推荐
shayudiandian29 分钟前
用PyTorch训练一个猫狗分类器
人工智能·pytorch·深度学习
这儿有一堆花33 分钟前
把 AI 装进终端:Gemini CLI 上手体验与核心功能解析
人工智能·ai·ai编程
子午1 小时前
【蘑菇识别系统】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积网络+resnet50算法
人工智能·python·深度学习
模型启动机1 小时前
Langchain正式宣布,Deep Agents全面支持Skills,通用AI代理的新范式?
人工智能·ai·langchain·大模型·agentic ai
Python私教1 小时前
别让 API Key 裸奔:基于 TRAE SOLO 的大模型安全配置最佳实践
人工智能
Python私教1 小时前
Vibe Coding 体验报告:我让 TRAE SOLO 替我重构了 2000 行屎山代码,结果...
人工智能
prog_61031 小时前
【笔记】和各大AI语言模型写项目——手搓SDN后得到的经验
人工智能·笔记·语言模型
zhangfeng11331 小时前
深入剖析Kimi K2 Thinking与其他大规模语言模型(Large Language Models, LLMs)之间的差异
人工智能·语言模型·自然语言处理
paopao_wu1 小时前
人脸检测与识别-InsightFace:特征向量提取与识别
人工智能·目标检测
Aevget2 小时前
MyEclipse全新发布v2025.2——AI + Java 24 +更快的调试
java·ide·人工智能·eclipse·myeclipse