opencv案例03 -基于OpenCV实现二维码生成,发现,定位,识别

1.二维码的生成

废话不多说,直接上代码

cpp 复制代码
# 生成二维码
import qrcode

# 二维码包含的示例数据
data = "B0018"
# 生成的二维码图片名称
filename = "qrcode.png"
# 生成二维码
img = qrcode.make(data)
# 保存成图片输出
img.save(filename)

img.show()

运行效果:

会在当前目前生成一张图片

对生成的二维码识别

opencv从4代之后推出了二维码识别接口.调用方法是这样的.代码如下:

cpp 复制代码
import cv2

img = cv2.imread('qrcode.png')
qrcode = cv2.QRCodeDetector()
result, points, code = qrcode.detectAndDecode(img)

print(result)

运行结果:

cpp 复制代码
B0018

返回值有三个,

  • 第一个result就是解码后的内容,例如我这个二维码的结果是"B0018",当然也可以是个纯数字.

  • 第二个points是二维码轮廓的四个角,从左上角顺时针转的.

  • 第三个code是二维码的原始排列,也就是每个点是0还是255的一个矩阵.白色是255,黑色是0.调用起来十分方便,而且如果不需要解码,只是想定位的话可以调用detect函数,返回结果就只有四个角点了.

如果是一个大图中的一个二维码识别呢?比如下面的这个图

如果继续使用上面的识别二维码是识别不出来的。

下面我们看下二维码的原理及定位原理

二维码的结构与基本原理

标准的二维码结构如下:

特别要关注的是图中三个黑色正方形区域,它们就是用来定位一个二维码的最重要的三个区域,我们二维码扫描与检测首先要做的就是要发现这三个区域,如果找到这个三个区域,我们就成功的发现一个二维码了,就可以对它定位与识别了。

二维码其它各个部分的说明如下:

三个角上的正方形区域从左到右,从上到下黑白比例为1:1:3:1:1。

不管角度如何变化,这个是最显著的特征,通过这个特征我们就可以实现二维码扫描检测与定位。

除了上面的qrcode 包可以识别二维码外,还有pyzbar 包 也可以进行二维码的识别。比对下pyzbar 比qrcode 包的效率 更高。下面的代码

cpp 复制代码
import cv2
import numpy as np
import time
import pyzbar.pyzbar as pyzbar

# 显示条码和二维码位置
def display(im, decodedObjects):
    # 遍历所有已解码的对象
    for decodedObject in decodedObjects:
        points = decodedObject.polygon

        # 如果点不形成四边形,请找到凸包
        if len(points) > 4:
            hull = cv2.convexHull(np.array([point for point in points], dtype=np.float32))
            hull = list(map(tuple, np.squeeze(hull)))
        else:
            hull = points;
        # 凸包中的点数
        n = len(hull)
        # 绘制凸包
        for j in range(0, n):
            cv2.line(im, hull[j], hull[(j + 1) % n], (255, 0, 0), 3)
# 创建一个 qrCodeDetector 对象
qrDecoder = cv2.QRCodeDetector()

# 检测和解码二维码
t = time.time()
inputImage = cv2.imread("66.jpg")

decodedObjects = pyzbar.decode(inputImage)
if len(decodedObjects):
    zbarData = decodedObjects[0].data
else:
    zbarData = ''


if zbarData:
    cv2.putText(inputImage, "result : {}".format(zbarData.decode()), (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 1,
                (0, 255, 0), 2, cv2.LINE_AA)
else:
    cv2.putText(inputImage, "ZBAR : QR Code NOT Detected", (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2,
                cv2.LINE_AA)

display(inputImage, decodedObjects)

print("Time Taken for Detect and Decode : {:.3f} seconds".format(time.time() - t))
cv2.imshow("Result", inputImage)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行效果:

从结果中可以看出可以定位到二维码的位置并将 识别的结果显示在左上角。

相关推荐
三天哥几秒前
演示和解读ChatGPT App SDK,以后Android/iOS App不用开发了?
人工智能·ai·chatgpt·aigc·openai·智能体·appsdk
mit6.82419 分钟前
PyTorch & Transformers| Azure
人工智能
程序员陆通22 分钟前
OpenAI Dev Day 2025:AI开发新纪元的全面布局
人工智能
新兴ICT项目支撑22 分钟前
BERT文本分类超参数优化实战:从13小时到83秒的性能飞跃
人工智能·分类·bert
真智AI25 分钟前
小模型大智慧:新一代轻量化语言模型全解析
人工智能·语言模型·自然语言处理
算法打盹中43 分钟前
计算机视觉:基于 YOLO 的轻量级目标检测与自定义目标跟踪原理与代码框架实现
图像处理·yolo·目标检测·计算机视觉·目标跟踪
小关会打代码1 小时前
深度学习之YOLO系列YOLOv1
人工智能·深度学习·yolo
大山同学1 小时前
CNN手写数字识别minist
人工智能·神经网络·cnn
道可云1 小时前
道可云人工智能每日资讯|2025世界智能网联汽车大会将在北京举办
人工智能·百度·汽车·ar·xr·deepseek