opencv案例03 -基于OpenCV实现二维码生成,发现,定位,识别

1.二维码的生成

废话不多说,直接上代码

cpp 复制代码
# 生成二维码
import qrcode

# 二维码包含的示例数据
data = "B0018"
# 生成的二维码图片名称
filename = "qrcode.png"
# 生成二维码
img = qrcode.make(data)
# 保存成图片输出
img.save(filename)

img.show()

运行效果:

会在当前目前生成一张图片

对生成的二维码识别

opencv从4代之后推出了二维码识别接口.调用方法是这样的.代码如下:

cpp 复制代码
import cv2

img = cv2.imread('qrcode.png')
qrcode = cv2.QRCodeDetector()
result, points, code = qrcode.detectAndDecode(img)

print(result)

运行结果:

cpp 复制代码
B0018

返回值有三个,

  • 第一个result就是解码后的内容,例如我这个二维码的结果是"B0018",当然也可以是个纯数字.

  • 第二个points是二维码轮廓的四个角,从左上角顺时针转的.

  • 第三个code是二维码的原始排列,也就是每个点是0还是255的一个矩阵.白色是255,黑色是0.调用起来十分方便,而且如果不需要解码,只是想定位的话可以调用detect函数,返回结果就只有四个角点了.

如果是一个大图中的一个二维码识别呢?比如下面的这个图

如果继续使用上面的识别二维码是识别不出来的。

下面我们看下二维码的原理及定位原理

二维码的结构与基本原理

标准的二维码结构如下:

特别要关注的是图中三个黑色正方形区域,它们就是用来定位一个二维码的最重要的三个区域,我们二维码扫描与检测首先要做的就是要发现这三个区域,如果找到这个三个区域,我们就成功的发现一个二维码了,就可以对它定位与识别了。

二维码其它各个部分的说明如下:

三个角上的正方形区域从左到右,从上到下黑白比例为1:1:3:1:1。

不管角度如何变化,这个是最显著的特征,通过这个特征我们就可以实现二维码扫描检测与定位。

除了上面的qrcode 包可以识别二维码外,还有pyzbar 包 也可以进行二维码的识别。比对下pyzbar 比qrcode 包的效率 更高。下面的代码

cpp 复制代码
import cv2
import numpy as np
import time
import pyzbar.pyzbar as pyzbar

# 显示条码和二维码位置
def display(im, decodedObjects):
    # 遍历所有已解码的对象
    for decodedObject in decodedObjects:
        points = decodedObject.polygon

        # 如果点不形成四边形,请找到凸包
        if len(points) > 4:
            hull = cv2.convexHull(np.array([point for point in points], dtype=np.float32))
            hull = list(map(tuple, np.squeeze(hull)))
        else:
            hull = points;
        # 凸包中的点数
        n = len(hull)
        # 绘制凸包
        for j in range(0, n):
            cv2.line(im, hull[j], hull[(j + 1) % n], (255, 0, 0), 3)
# 创建一个 qrCodeDetector 对象
qrDecoder = cv2.QRCodeDetector()

# 检测和解码二维码
t = time.time()
inputImage = cv2.imread("66.jpg")

decodedObjects = pyzbar.decode(inputImage)
if len(decodedObjects):
    zbarData = decodedObjects[0].data
else:
    zbarData = ''


if zbarData:
    cv2.putText(inputImage, "result : {}".format(zbarData.decode()), (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 1,
                (0, 255, 0), 2, cv2.LINE_AA)
else:
    cv2.putText(inputImage, "ZBAR : QR Code NOT Detected", (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2,
                cv2.LINE_AA)

display(inputImage, decodedObjects)

print("Time Taken for Detect and Decode : {:.3f} seconds".format(time.time() - t))
cv2.imshow("Result", inputImage)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行效果:

从结果中可以看出可以定位到二维码的位置并将 识别的结果显示在左上角。

相关推荐
开源技术22 分钟前
深入了解Turso,这个“用Rust重写的SQLite”
人工智能·python
初恋叫萱萱23 分钟前
构建高性能生成式AI应用:基于Rust Axum与蓝耘DeepSeek-V3.2大模型服务的全栈开发实战
开发语言·人工智能·rust
水如烟8 小时前
孤能子视角:“组织行为学–组织文化“
人工智能
大山同学8 小时前
图片补全-Context Encoder
人工智能·机器学习·计算机视觉
薛定谔的猫19828 小时前
十七、用 GPT2 中文对联模型实现经典上联自动对下联:
人工智能·深度学习·gpt2·大模型 训练 调优
壮Sir不壮8 小时前
2026年奇点:Clawdbot引爆个人AI代理
人工智能·ai·大模型·claude·clawdbot·moltbot·openclaw
PaperRed ai写作降重助手8 小时前
高性价比 AI 论文写作软件推荐:2026 年预算友好型
人工智能·aigc·论文·写作·ai写作·智能降重
玉梅小洋8 小时前
Claude Code 从入门到精通(七):Sub Agent 与 Skill 终极PK
人工智能·ai·大模型·ai编程·claude·ai工具
-嘟囔着拯救世界-8 小时前
【保姆级教程】Win11 下从零部署 Claude Code:本地环境配置 + VSCode 可视化界面全流程指南
人工智能·vscode·ai·编辑器·html5·ai编程·claude code
正见TrueView8 小时前
程一笑的价值选择:AI金玉其外,“收割”老人败絮其中
人工智能