基于社交网络算法优化的BP神经网络(预测应用) - 附代码

基于社交网络算法优化的BP神经网络(预测应用) - 附代码

文章目录

摘要:本文主要介绍如何用社交网络算法优化BP神经网络并应用于预测。

1.数据介绍

本案例数据一共2000组,其中1900组用于训练,100组用于测试。数据的输入为2维数据,预测的输出为1维数据

2.社交网络优化BP神经网络

2.1 BP神经网络参数设置

神经网络参数如下:

matlab 复制代码
%% 构造网络结构
%创建神经网络
inputnum = 2;     %inputnum  输入层节点数 2维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 1;     %outputnum  隐含层节点数

2.2 社交网络算法应用

社交网络算法原理请参考:https://blog.csdn.net/u011835903/article/details/122390020

社交网络算法的参数设置为:

matlab 复制代码
popsize = 20;%种群数量
Max_iteration = 20;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:2*10 = 20; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:10*1 = 10;即hiddenum * outputnum;

第二层权值数量为:1;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 41;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( m s e ( T r a i n D a t a E r r o r ) + m e s ( T e s t D a t a E r r o r ) ) fitness = argmin(mse(TrainDataError) + mes(TestDataError)) fitness=argmin(mse(TrainDataError)+mes(TestDataError))

其中TrainDataError,TestDataError分别为训练集和测试集的预测误差。mse为求取均方误差函数,适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从社交网络算法的收敛曲线可以看到,整体误差是不断下降的,说明社交网络算法起到了优化的作用:




5.Matlab代码

相关推荐
海里的鱼2022几秒前
yolov11配置环境,实现OBB带方向目标检测
人工智能·yolo·目标检测·计算机视觉
道友老李15 分钟前
【自然语言处理(NLP)】介绍、发展史
人工智能·自然语言处理
查理零世25 分钟前
【算法】经典博弈论问题——巴什博弈 python
开发语言·python·算法
神探阿航30 分钟前
第十五届蓝桥杯大赛软件赛省赛C/C++ 大学 B 组
java·算法·蓝桥杯
皮肤科大白1 小时前
如何在data.table中处理缺失值
学习·算法·机器学习
有Li1 小时前
基于深度学习的微出血自动检测及解剖尺度定位|文献速递-视觉大模型医疗图像应用
人工智能·深度学习
熙曦Sakura1 小时前
【深度学习】微积分
人工智能·深度学习
qq_254674411 小时前
如何用概率论解决真实问题?用随机变量去建模,最大的难题是相关关系
人工智能·神经网络
汤姆和佩琦1 小时前
2025-1-21-sklearn学习(43) 使用 scikit-learn 介绍机器学习 楼上阑干横斗柄,寒露人远鸡相应。
人工智能·python·学习·机器学习·scikit-learn·sklearn
远洋录1 小时前
AI Agent的记忆系统实现:从短期对话到长期知识
人工智能·ai·ai agent