基于社交网络算法优化的BP神经网络(预测应用) - 附代码

基于社交网络算法优化的BP神经网络(预测应用) - 附代码

文章目录

摘要:本文主要介绍如何用社交网络算法优化BP神经网络并应用于预测。

1.数据介绍

本案例数据一共2000组,其中1900组用于训练,100组用于测试。数据的输入为2维数据,预测的输出为1维数据

2.社交网络优化BP神经网络

2.1 BP神经网络参数设置

神经网络参数如下:

matlab 复制代码
%% 构造网络结构
%创建神经网络
inputnum = 2;     %inputnum  输入层节点数 2维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 1;     %outputnum  隐含层节点数

2.2 社交网络算法应用

社交网络算法原理请参考:https://blog.csdn.net/u011835903/article/details/122390020

社交网络算法的参数设置为:

matlab 复制代码
popsize = 20;%种群数量
Max_iteration = 20;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:2*10 = 20; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:10*1 = 10;即hiddenum * outputnum;

第二层权值数量为:1;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 41;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( m s e ( T r a i n D a t a E r r o r ) + m e s ( T e s t D a t a E r r o r ) ) fitness = argmin(mse(TrainDataError) + mes(TestDataError)) fitness=argmin(mse(TrainDataError)+mes(TestDataError))

其中TrainDataError,TestDataError分别为训练集和测试集的预测误差。mse为求取均方误差函数,适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从社交网络算法的收敛曲线可以看到,整体误差是不断下降的,说明社交网络算法起到了优化的作用:




5.Matlab代码

相关推荐
max5006004 分钟前
基于桥梁三维模型的无人机检测路径规划系统设计与实现
前端·javascript·python·算法·无人机·easyui
快去睡觉~2 小时前
力扣400:第N位数字
数据结构·算法·leetcode
失散132 小时前
深度学习——02 PyTorch
人工智能·pytorch·深度学习
Re_draw_debubu2 小时前
神经网络 小土堆pytorch记录
pytorch·神经网络·小土堆
图灵学术计算机论文辅导3 小时前
傅里叶变换+attention机制,深耕深度学习领域
人工智能·python·深度学习·计算机网络·考研·机器学习·计算机视觉
qqxhb3 小时前
零基础数据结构与算法——第七章:算法实践与工程应用-搜索引擎
算法·搜索引擎·tf-idf·倒排索引·pagerank·算法库
gzzeason4 小时前
LeetCode Hot100:递归穿透值传递问题
算法·leetcode·职场和发展
汤永红4 小时前
week1-[循环嵌套]画正方形
数据结构·c++·算法
pusue_the_sun4 小时前
数据结构——顺序表&&单链表oj详解
c语言·数据结构·算法·链表·顺序表
重启的码农5 小时前
ggml 介绍(4) 计算图 (ggml_cgraph)
c++·人工智能