基于社交网络算法优化的BP神经网络(预测应用) - 附代码

基于社交网络算法优化的BP神经网络(预测应用) - 附代码

文章目录

摘要:本文主要介绍如何用社交网络算法优化BP神经网络并应用于预测。

1.数据介绍

本案例数据一共2000组,其中1900组用于训练,100组用于测试。数据的输入为2维数据,预测的输出为1维数据

2.社交网络优化BP神经网络

2.1 BP神经网络参数设置

神经网络参数如下:

matlab 复制代码
%% 构造网络结构
%创建神经网络
inputnum = 2;     %inputnum  输入层节点数 2维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 1;     %outputnum  隐含层节点数

2.2 社交网络算法应用

社交网络算法原理请参考:https://blog.csdn.net/u011835903/article/details/122390020

社交网络算法的参数设置为:

matlab 复制代码
popsize = 20;%种群数量
Max_iteration = 20;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:2*10 = 20; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:10*1 = 10;即hiddenum * outputnum;

第二层权值数量为:1;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 41;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( m s e ( T r a i n D a t a E r r o r ) + m e s ( T e s t D a t a E r r o r ) ) fitness = argmin(mse(TrainDataError) + mes(TestDataError)) fitness=argmin(mse(TrainDataError)+mes(TestDataError))

其中TrainDataError,TestDataError分别为训练集和测试集的预测误差。mse为求取均方误差函数,适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从社交网络算法的收敛曲线可以看到,整体误差是不断下降的,说明社交网络算法起到了优化的作用:




5.Matlab代码

相关推荐
零售ERP菜鸟5 分钟前
范式革命:从“信息化”到“数字化”的本质跃迁
大数据·人工智能·职场和发展·创业创新·学习方法·业界资讯
光羽隹衡8 分钟前
计算机视觉——Opencv(图像拼接)
人工智能·opencv·计算机视觉
power 雀儿20 分钟前
掩码(Mask)机制 结合 多头自注意力函数
算法
SEO_juper23 分钟前
2026内容营销破局指南:告别流量内卷,以价值赢信任
人工智能·ai·数字营销·2026
会叫的恐龙24 分钟前
C++ 核心知识点汇总(第六日)(字符串)
c++·算法·字符串
初恋叫萱萱26 分钟前
数据即燃料:用 `cann-data-augmentation` 实现高效训练预处理
人工智能
小糯米60135 分钟前
C++顺序表和vector
开发语言·c++·算法
一战成名99635 分钟前
CANN 仓库揭秘:昇腾 AI 算子开发的宝藏之地
人工智能
hnult41 分钟前
2026 在线培训考试系统选型指南:核心功能拆解与选型逻辑
人工智能·笔记·课程设计
A小码哥42 分钟前
AI 设计时代的到来:从 PS 到 Pencil,一个人如何顶替一个团队
人工智能