多维时序 | Matlab实现GRU-Adaboost和GRU多变量时间序列预测对比

多维时序 | Matlab实现GRU-Adaboost和GRU多变量时间序列预测对比

目录

预测效果



基本介绍

多维时序 | Matlab实现GRU-Adaboost和GRU多变量时间序列预测对比

模型描述

Matlab实现GRU-Adaboost和GRU多变量时间序列预测对比(完整程序和数据)

1.输入多个特征,输出单个变量;

2.考虑历史特征的影响,多变量时间序列预测;

4.csv数据,方便替换;

5.运行环境Matlab2018b及以上;

6.输出误差对比图。

程序设计

clike 复制代码
 
        (32,'OutputMode',"last",'Name','bil4','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')
        dropoutLayer(0.25,'Name','drop2')
        % 全连接层
        fullyConnectedLayer(numResponses,'Name','fc')
        regressionLayer('Name','output')    ];

    layers = layerGraph(layers);
    layers = connectLayers(layers,'fold/miniBatchSize','unfold/miniBatchSize');
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 训练选项
if gpuDeviceCount>0
    mydevice = 'gpu';
else
    mydevice = 'cpu';
end
    options = trainingOptions('adam', ...
        'MaxEpochs',MaxEpochs, ...
        'MiniBatchSize',MiniBatchSize, ...
        'GradientThreshold',1, ...
        'InitialLearnRate',learningrate, ...
        'LearnRateSchedule','piecewise', ...
        'LearnRateDropPeriod',56, ...
        'LearnRateDropFactor',0.25, ...
        'L2Regularization',1e-3,...
        'GradientDecayFactor',0.95,...
        'Verbose',false, ...
        'Shuffle',"every-epoch",...
        'ExecutionEnvironment',mydevice,...
        'Plots','training-progress');
%% 模型训练
rng(0);
net = trainNetwork(XrTrain,YrTrain,layers,options);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 测试数据预测
% 测试集预测
YPred = predict(net,XrTest,"ExecutionEnvironment",mydevice,"MiniBatchSize",numFeatures);
YPred = YPred';
% 数据反归一化
YPred = sig.*YPred + mu;
YTest = sig.*YTest + mu;
------------------------------------------------
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

参考资料

[1] http://t.csdn.cn/pCWSp

[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501

[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

相关推荐
机器学习之心19 小时前
BiTCN-BiGRU基于双向时间卷积网络结合双向门控循环单元的数据多特征分类预测(多输入单输出)
深度学习·分类·gru
机器学习之心21 小时前
Bayes-GRU-Attention的数据多特征分类预测Matlab实现
matlab·分类·gru
MarkHD3 天前
第二十四天 循环神经网络(RNN)LSTM与GRU
rnn·gru·lstm
【建模先锋】10 天前
独家原创 | CEEMDAN-CNN-GRU-GlobalAttention + XGBoost组合预测
人工智能·cnn·gru·风速预测·时间序列预测模型
不如语冰15 天前
跟着问题学15——GRU网络结构详解及代码实战
人工智能·python·rnn·深度学习·机器学习·语言模型·gru
记得多吃点16 天前
九、RNN的变体
人工智能·rnn·深度学习·gru·lstm
coldstarry17 天前
sheng的学习笔记-AI-序列模型(Sequence Models),RNN,GRU,LSTM
rnn·深度学习·gru·lstm
铖铖的花嫁20 天前
基于 RNN(GRU, LSTM)+CNN 的红点位置检测(pytorch)
pytorch·rnn·神经网络·cnn·gru·lstm
机器学习之心21 天前
HHO-CNN-BiGRU-Attention哈里斯鹰优化算法卷积神经网络结合双向门控循环单元时间序列预测,含优化前后对比
算法·cnn·gru·hho-cnn-bigru