多维时序 | Matlab实现GRU-Adaboost和GRU多变量时间序列预测对比

多维时序 | Matlab实现GRU-Adaboost和GRU多变量时间序列预测对比

目录

预测效果



基本介绍

多维时序 | Matlab实现GRU-Adaboost和GRU多变量时间序列预测对比

模型描述

Matlab实现GRU-Adaboost和GRU多变量时间序列预测对比(完整程序和数据)

1.输入多个特征,输出单个变量;

2.考虑历史特征的影响,多变量时间序列预测;

4.csv数据,方便替换;

5.运行环境Matlab2018b及以上;

6.输出误差对比图。

程序设计

clike 复制代码
 
        (32,'OutputMode',"last",'Name','bil4','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')
        dropoutLayer(0.25,'Name','drop2')
        % 全连接层
        fullyConnectedLayer(numResponses,'Name','fc')
        regressionLayer('Name','output')    ];

    layers = layerGraph(layers);
    layers = connectLayers(layers,'fold/miniBatchSize','unfold/miniBatchSize');
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 训练选项
if gpuDeviceCount>0
    mydevice = 'gpu';
else
    mydevice = 'cpu';
end
    options = trainingOptions('adam', ...
        'MaxEpochs',MaxEpochs, ...
        'MiniBatchSize',MiniBatchSize, ...
        'GradientThreshold',1, ...
        'InitialLearnRate',learningrate, ...
        'LearnRateSchedule','piecewise', ...
        'LearnRateDropPeriod',56, ...
        'LearnRateDropFactor',0.25, ...
        'L2Regularization',1e-3,...
        'GradientDecayFactor',0.95,...
        'Verbose',false, ...
        'Shuffle',"every-epoch",...
        'ExecutionEnvironment',mydevice,...
        'Plots','training-progress');
%% 模型训练
rng(0);
net = trainNetwork(XrTrain,YrTrain,layers,options);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 测试数据预测
% 测试集预测
YPred = predict(net,XrTest,"ExecutionEnvironment",mydevice,"MiniBatchSize",numFeatures);
YPred = YPred';
% 数据反归一化
YPred = sig.*YPred + mu;
YTest = sig.*YTest + mu;
------------------------------------------------
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

参考资料

1\] http://t.csdn.cn/pCWSp \[2\] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501 \[3\] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

相关推荐
AAA锅包肉批发7 天前
论文阅读:Aircraft Trajectory Prediction Model Based on Improved GRU Structure
论文阅读·深度学习·gru
数据知道7 天前
GRU模型:门控循环单元的原理与优势及Python实现
python·深度学习·gru
nju_spy9 天前
周志华院士西瓜书实战(二)MLP+SVM+贝叶斯分类器+决策树+集成学习
决策树·随机森林·机器学习·adaboost·svm·mlp·南京大学
星马梦缘11 天前
RNN梯度爆炸/消失的杀手锏——LSTM与GRU
人工智能·rnn·深度学习·gru·lstm·长短期记忆
简简单单做算法11 天前
基于WOA鲸鱼优化的VMD-GRU时间序列预测算法matlab仿真
matlab·gru·时间序列预测·woa·鲸鱼优化·vmd-gru
机器学习之心12 天前
单变量单步时序预测:CNN-GRU卷积神经网络结合门控循环单元
人工智能·cnn·gru·cnn-gru
go546315846520 天前
基于LSTM和GRU的上海空气质量预测研究
图像处理·人工智能·深度学习·神经网络·算法·gru·lstm
机器学习之心24 天前
三种深度学习模型(GRU、CNN-GRU、贝叶斯优化的CNN-GRU/BO-CNN-GRU)对北半球光伏数据进行时间序列预测
gru·cnn-gru·贝叶斯优化的cnn-gru
王小王-1231 个月前
基于深度学习的LSTM、GRU对大数据交通流量分析与预测的研究
深度学习·gru·lstm·交通流量预测系统·客流量预测系统·流量预测·拥堵预测
机器学习之心1 个月前
顶级SCI极光优化算法!PLO-Transformer-GRU多变量时间序列预测,Matlab实现
gru·多变量时间序列预测·顶级sci极光优化算法·plo-transformer