多维时序 | Matlab实现GRU-Adaboost和GRU多变量时间序列预测对比

多维时序 | Matlab实现GRU-Adaboost和GRU多变量时间序列预测对比

目录

预测效果



基本介绍

多维时序 | Matlab实现GRU-Adaboost和GRU多变量时间序列预测对比

模型描述

Matlab实现GRU-Adaboost和GRU多变量时间序列预测对比(完整程序和数据)

1.输入多个特征,输出单个变量;

2.考虑历史特征的影响,多变量时间序列预测;

4.csv数据,方便替换;

5.运行环境Matlab2018b及以上;

6.输出误差对比图。

程序设计

clike 复制代码
 
        (32,'OutputMode',"last",'Name','bil4','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')
        dropoutLayer(0.25,'Name','drop2')
        % 全连接层
        fullyConnectedLayer(numResponses,'Name','fc')
        regressionLayer('Name','output')    ];

    layers = layerGraph(layers);
    layers = connectLayers(layers,'fold/miniBatchSize','unfold/miniBatchSize');
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 训练选项
if gpuDeviceCount>0
    mydevice = 'gpu';
else
    mydevice = 'cpu';
end
    options = trainingOptions('adam', ...
        'MaxEpochs',MaxEpochs, ...
        'MiniBatchSize',MiniBatchSize, ...
        'GradientThreshold',1, ...
        'InitialLearnRate',learningrate, ...
        'LearnRateSchedule','piecewise', ...
        'LearnRateDropPeriod',56, ...
        'LearnRateDropFactor',0.25, ...
        'L2Regularization',1e-3,...
        'GradientDecayFactor',0.95,...
        'Verbose',false, ...
        'Shuffle',"every-epoch",...
        'ExecutionEnvironment',mydevice,...
        'Plots','training-progress');
%% 模型训练
rng(0);
net = trainNetwork(XrTrain,YrTrain,layers,options);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 测试数据预测
% 测试集预测
YPred = predict(net,XrTest,"ExecutionEnvironment",mydevice,"MiniBatchSize",numFeatures);
YPred = YPred';
% 数据反归一化
YPred = sig.*YPred + mu;
YTest = sig.*YTest + mu;
------------------------------------------------
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

参考资料

1\] http://t.csdn.cn/pCWSp \[2\] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501 \[3\] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

相关推荐
addaduvyhup2 天前
【RNN-LSTM-GRU】第三篇 LSTM门控机制详解:告别梯度消失,让神经网络拥有长期记忆
rnn·gru·lstm
Gyoku Mint3 天前
NLP×第六卷:她给记忆加了筛子——LSTM与GRU的贴靠机制
人工智能·深度学习·神经网络·语言模型·自然语言处理·gru·lstm
addaduvyhup4 天前
【RNN-LSTM-GRU】第一篇 序列建模基础:理解数据的“顺序”之力
rnn·gru·lstm
addaduvyhup5 天前
【RNN-LSTM-GRU】第二篇 序列模型原理深度剖析:从RNN到LSTM与GRU
rnn·gru·lstm
love you joyfully11 天前
循环神经网络——pytorch实现循环神经网络(RNN、GRU、LSTM)
人工智能·pytorch·rnn·深度学习·gru·循环神经网络
AI科技编码14 天前
当模型学会集思广益:集成学习的核心原理与多样化协作模式解析
adaboost·boosting·bagging·集成算法
Hao想睡觉15 天前
循环神经网络(RNN)、LSTM 与 GRU (一)
rnn·gru·lstm
失散1317 天前
自然语言处理——03 RNN及其变体
人工智能·rnn·自然语言处理·gru·lstm
学行库小秘19 天前
基于门控循环单元的数据回归预测 GRU
人工智能·深度学习·神经网络·算法·回归·gru
AAA锅包肉批发1 个月前
论文阅读:Aircraft Trajectory Prediction Model Based on Improved GRU Structure
论文阅读·深度学习·gru