【SLAM轨迹误差】rpg_trajectory_evaluation

下载地址:https://www.zora.uzh.ch/id/eprint/175991/1/IROS18_Zhang.pdf

Z. Zhang and D. Scaramuzza, "A Tutorial on Quantitative Trajectory

Evaluation for Visual(-Inertial) Odometry," 2018 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS),

Madrid, Spain, 2018, pp. 7244-7251, doi: 10.1109/IROS.2018.8593941.

安装python2 的pip

bash 复制代码
wget https://bootstrap.pypa.io/pip/2.7/get-pip.py
// 或者curl https://bootstrap.pypa.io/pip/2.7/get-pip.py --output get-pip.py
sudo python2 get-pip.py
sudo apt-get install python-dev

安装成功之后可以查看

bash 复制代码
pf@pf-NUC12WSKi7:~$ pip -V
pip 20.3.4 from /home/pf/.local/lib/python2.7/site-packages/pip (python 2.7)

安装依赖

bash 复制代码
pip install numpy
pip install matplotlib
pip install colorama
pip install ruamel.yaml
sudo apt install texlive-fonts-recommended texlive-fonts-extra
sudo apt install dvipng
pip install PyYAML==5.1

下载编译如下

bash 复制代码
mkdir catkin_ws
cd catkin_ws
mkdir src
cd src
git clone  https://github.com/uzh-rpg/rpg_trajectory_evaluation.git
git clone https://github.com/catkin/catkin_simple.git
cd ..
catkin_make 

简单评测

bash 复制代码
source devel/setup.bash
rosrun rpg_trajectory_evaluation analyze_trajectory_single.py <result_folder>

直接将 <result_folder>替换为iTest文件夹即可,文件夹中放置真值和对应的估计值如下:

bash 复制代码
├── analyze_trajectories_config
│   ├── euroc_vio_mono_stereo.yaml
│   └── euroc_vislam_mono.yaml
├── CMakeLists.txt
├── iTest
│   ├── stamped_groundtruth.txt
│   └── stamped_traj_estimate.txt

深入说明:

数据格式:

  • stamped_groundtruth.txt: groundtruth poses with timestamps
  • stamped_traj_estimate.txt: estimated poses with timestamps
  • (optional) eval_cfg.yaml: specify evaluation parameters
  • (optional) start_end_time.yaml: specify the start and end time (in seconds) for analysis., 0 to N-1

*** stamped_groundtruth.txt😗*

timestamp tx ty tz qx qy qz qw

1.403636580013555527e+09 1.258278699999999979e-02 -1.561510199999999963e-03 -4.015300900000000339e-02 -5.131151899999999988e-02 -8.092916900000000080e-01 8.562779200000000248e-04 5.851609599999999523e-01 ...

scripts/dataset_tools 文件下的脚本可以转换以上数据格式 (EuRoC style, ROS bag)

参数说明:
eval_cfg.yaml

trajectory alignment (used in absolute errors):

  • align_type:
    • sim3: a similarity transformation (for vision-only monocular case)
    • se3: a rigid body transformation (for vision-only stereo case)
    • posyaw: a translation plus a rotation around gravity (for visual-inertial case)
    • none: do not align the trajectory
  • align_num_frames: the number of poses (starting from the beginning) that will be used in the trajectory alignment. -1 means all poses will be used.

If this file does not exist, trajectory alignment will be done using sim3 and all the poses.

Start and end times

start_end_time.yaml can specify the following (according to groundtruth time):

  • start_time_sec: only poses after this time will be used for analysis
  • end_time_sec: only poses before this time will be used for analysis

If this file does not exist, analysis be done for all the poses in stamped_traj_estimate.txt.

复制代码
rosrun 
rpg_trajectory_evaluation 
analyze_trajectories.py  
 euroc_vislam_mono.yaml 
 --output_dir=./results/euroc_vislam_mono 
 --results_dir=./results/euroc_vislam_mono 
 --platform laptop 
 --odometry_error_per_dataset 
 --plot_trajectories 
 --rmse_table 
 --rmse_boxplot 
 --mul_trials=10
相关推荐
点云SLAM2 天前
弱纹理图像特征匹配算法推荐汇总
人工智能·深度学习·算法·计算机视觉·机器人·slam·弱纹理图像特征匹配
放羊郎2 天前
基于萤火虫+Gmapping、分层+A*优化的导航方案
人工智能·slam·建图·激光slam
放羊郎2 天前
基于ROS2的语义格栅地图导航
人工智能·slam·建图·激光slam
WWZZ20258 天前
快速上手大模型:深度学习3(实践:线性神经网络Softmax)
人工智能·深度学习·神经网络·机器人·大模型·slam·具身感知
WWZZ20258 天前
快速上手大模型:深度学习4(实践:多层感知机)
人工智能·深度学习·计算机视觉·机器人·大模型·slam·具身智能
放羊郎10 天前
SLAM各类算法特点对比
人工智能·算法·slam·视觉slam·建图·激光slam
放羊郎12 天前
基于三维点云图的路径规划
人工智能·动态规划·slam·点云·路径规划·激光slam
求索小沈12 天前
ubuntu22.04 ros2 fast_lio2 复现
slam·ros2·重定位·建图·mid360·fast_lio2
WWZZ202513 天前
快速上手大模型:深度学习2(实践:深度学习基础、线性回归)
人工智能·深度学习·算法·计算机视觉·机器人·大模型·slam
WWZZ202518 天前
快速上手大模型:机器学习6(过拟合、正则化)
人工智能·算法·机器学习·计算机视觉·机器人·slam·具身感知