机器学习和数据挖掘02-Gaussian Naive Bayes

概念

贝叶斯定理:

贝叶斯定理是概率中的基本定理,描述了如何根据更多证据或信息更新假设的概率。在分类的上下文中,它用于计算给定特征集的类别的后验概率。

特征独立性假设:

高斯朴素贝叶斯中的"朴素"假设是,给定类别标签,特征之间是相互独立的。这个简化假设在现实场景中通常并不完全准确,但它简化了计算过程,在实践中仍然可以表现良好。

高斯分布:

高斯朴素贝叶斯假设每个类别中的连续特征遵循高斯(正态)分布。这意味着在给定类别的情况下,特征的似然性被建模为一个由均值和标准差确定的正态分布。

参数估计:

要使用高斯朴素贝叶斯算法,需要为每个类别估计参数。对于每个类别中的每个特征,你需要基于训练数据估计均值和标准差。

分类:

对于具有特征值的新数据点,算法使用贝叶斯定理计算每个类别的后验概率。具有最高后验概率的类别被预测为数据点的最终类别标签。

公式


代码实现

python 复制代码
from sklearn.datasets import load_iris
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import cross_val_score, StratifiedKFold
import numpy as np

# Load example dataset (you can replace this with your own data)
data = load_iris()
X = data.data
y = data.target

# Create a Gaussian Naive Bayes model
gnb_model = GaussianNB()

# Create a StratifiedKFold cross-validation object
cvKFold = StratifiedKFold(n_splits=10, shuffle=True, random_state=0)

# Perform cross-validation using cross_val_score
scores = cross_val_score(gnb_model, X, y, cv=cvKFold)

# Print the cross-validation scores
print("Cross-validation scores:", scores)
print("Mean CV score:", np.mean(scores))
相关推荐
Elastic 中国社区官方博客几秒前
从向量到关键词:在 LangChain 中的 Elasticsearch 混合搜索
大数据·开发语言·数据库·elasticsearch·搜索引擎·ai·langchain
lauo5 分钟前
【智体OS】ibbot智体机灵 V1.0:你的手机AI超脑,一句话开启智体时代————终将打败OpenClaw的国产开源项目
人工智能·智能手机
OPEN-Source5 分钟前
给 Agent 安装技能:工具抽象、自动选工具与安全边界
人工智能·python·agent·rag·deepseek
量化炼金 (CodeAlchemy)7 分钟前
【交易策略】低通滤波器策略:在小时图上捕捉中期动量
大数据·人工智能·机器学习·区块链
培培说证13 分钟前
2026 大专大数据与会计专业考证书门槛低的有哪些?
大数据
智算菩萨14 分钟前
上下文学习的贝叶斯推断视角:隐式梯度下降还是隐式贝叶斯?
人工智能·算法
看-是灰机18 分钟前
openclaw
人工智能
骇城迷影35 分钟前
从零复现GPT-2 124M
人工智能·pytorch·python·gpt·深度学习
黑巧克力可减脂37 分钟前
商鞅变法与代码重构:AI正在如何重写软件工程的“耕战律令”
人工智能·重构·软件工程
大傻^40 分钟前
【AI安全攻防战】提示词攻击与防护:从“奶奶漏洞“到企业级防御体系
人工智能·安全·提示词安全