机器学习和数据挖掘02-Gaussian Naive Bayes

概念

贝叶斯定理:

贝叶斯定理是概率中的基本定理,描述了如何根据更多证据或信息更新假设的概率。在分类的上下文中,它用于计算给定特征集的类别的后验概率。

特征独立性假设:

高斯朴素贝叶斯中的"朴素"假设是,给定类别标签,特征之间是相互独立的。这个简化假设在现实场景中通常并不完全准确,但它简化了计算过程,在实践中仍然可以表现良好。

高斯分布:

高斯朴素贝叶斯假设每个类别中的连续特征遵循高斯(正态)分布。这意味着在给定类别的情况下,特征的似然性被建模为一个由均值和标准差确定的正态分布。

参数估计:

要使用高斯朴素贝叶斯算法,需要为每个类别估计参数。对于每个类别中的每个特征,你需要基于训练数据估计均值和标准差。

分类:

对于具有特征值的新数据点,算法使用贝叶斯定理计算每个类别的后验概率。具有最高后验概率的类别被预测为数据点的最终类别标签。

公式


代码实现

python 复制代码
from sklearn.datasets import load_iris
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import cross_val_score, StratifiedKFold
import numpy as np

# Load example dataset (you can replace this with your own data)
data = load_iris()
X = data.data
y = data.target

# Create a Gaussian Naive Bayes model
gnb_model = GaussianNB()

# Create a StratifiedKFold cross-validation object
cvKFold = StratifiedKFold(n_splits=10, shuffle=True, random_state=0)

# Perform cross-validation using cross_val_score
scores = cross_val_score(gnb_model, X, y, cv=cvKFold)

# Print the cross-validation scores
print("Cross-validation scores:", scores)
print("Mean CV score:", np.mean(scores))
相关推荐
500佰13 小时前
AI 财务案例 普通财务人的AI in ALL
前端·人工智能
桂花饼13 小时前
GPT-5.1-Codex-Max:原生“记忆压缩”重塑编程范式,让 AI 连续写代码 24 小时不再是梦
人工智能·gpt·ai绘图·nano banana 2·图像生成api·openai兼容接口·gpt-5.1-codex
Mintopia13 小时前
🌍 全球 AIGC 技术竞争格局下:Web 应用的技术自主可控思考
人工智能·aigc·trae
青云交13 小时前
Java 大视界 -- Java 大数据在智能医疗影像数据标注与疾病辅助诊断模型训练中的应用
java·大数据·多模态融合·医疗影像标注·辅助诊断·临床 ai·dicom 处理
摇滚侠13 小时前
ElasticSearch 教程入门到精通,测试工具、倒排索引、索引创建查询删除,笔记6、7、8、9
大数据·笔记·elasticsearch
Mintopia13 小时前
🏗️ 系统架构之:大模型 Token 计费方案
人工智能·架构·全栈
大卫小东(Sheldon)13 小时前
SQL查询中的窗口函数(主要以 PostgreSQL 为例)
大数据·sql·postgre
萤火虫的夏天25113 小时前
虚拟环境安装tensorflow使用GPU加速,显卡:1650ti
人工智能·python·tensorflow
万俟淋曦13 小时前
【论文速递】2025年第34周(Aug-17-23)(Robotics/Embodied AI/LLM)
人工智能·深度学习·机器学习·ai·机器人·论文·具身智能
亚马逊云开发者13 小时前
从误判到精准:游戏社区 AI 审核的工程化实践
人工智能