机器学习和数据挖掘02-Gaussian Naive Bayes

概念

贝叶斯定理:

贝叶斯定理是概率中的基本定理,描述了如何根据更多证据或信息更新假设的概率。在分类的上下文中,它用于计算给定特征集的类别的后验概率。

特征独立性假设:

高斯朴素贝叶斯中的"朴素"假设是,给定类别标签,特征之间是相互独立的。这个简化假设在现实场景中通常并不完全准确,但它简化了计算过程,在实践中仍然可以表现良好。

高斯分布:

高斯朴素贝叶斯假设每个类别中的连续特征遵循高斯(正态)分布。这意味着在给定类别的情况下,特征的似然性被建模为一个由均值和标准差确定的正态分布。

参数估计:

要使用高斯朴素贝叶斯算法,需要为每个类别估计参数。对于每个类别中的每个特征,你需要基于训练数据估计均值和标准差。

分类:

对于具有特征值的新数据点,算法使用贝叶斯定理计算每个类别的后验概率。具有最高后验概率的类别被预测为数据点的最终类别标签。

公式


代码实现

python 复制代码
from sklearn.datasets import load_iris
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import cross_val_score, StratifiedKFold
import numpy as np

# Load example dataset (you can replace this with your own data)
data = load_iris()
X = data.data
y = data.target

# Create a Gaussian Naive Bayes model
gnb_model = GaussianNB()

# Create a StratifiedKFold cross-validation object
cvKFold = StratifiedKFold(n_splits=10, shuffle=True, random_state=0)

# Perform cross-validation using cross_val_score
scores = cross_val_score(gnb_model, X, y, cv=cvKFold)

# Print the cross-validation scores
print("Cross-validation scores:", scores)
print("Mean CV score:", np.mean(scores))
相关推荐
用户Taobaoapi201413 分钟前
淘宝商品列表查询 API 接口详解
大数据
说私域13 分钟前
基于定制开发开源AI智能名片S2B2C商城小程序的零售运营策略研究
人工智能·小程序·开源·零售
Constancy17 分钟前
DeepSeek 本地部署及使用
人工智能
qq_2739002338 分钟前
AF3 squeeze_features函数解读
人工智能·pytorch·深度学习·生物信息学
fanxiaohui1213838 分钟前
元脑服务器的创新应用:浪潮信息引领AI计算新时代
运维·服务器·人工智能
新智元40 分钟前
哥大本科生靠 AI 横扫硅谷大厂 offer,学校震怒!预言码农两年内淘汰准备退学
人工智能·面试
新智元1 小时前
1 次搭建完胜 1 亿次编码,MCP 硅谷疯传!Anthropic 协议解锁智能体「万能手」
人工智能·openai
程序员~小强1 小时前
让知识触手可及!基于Neo4j的机械设备知识图谱问答系统
人工智能·python·django·知识图谱·neo4j
机器之心1 小时前
稚晖君的「好东西」揭晓!首个通用具身基座模型,机器人告别「看得懂做不来」
人工智能·openai
涛思数据(TDengine)1 小时前
taosd 写入与查询场景下压缩解压及加密解密的 CPU 占用分析
大数据·数据库·时序数据库·tdengine