机器学习和数据挖掘02-Gaussian Naive Bayes

概念

贝叶斯定理:

贝叶斯定理是概率中的基本定理,描述了如何根据更多证据或信息更新假设的概率。在分类的上下文中,它用于计算给定特征集的类别的后验概率。

特征独立性假设:

高斯朴素贝叶斯中的"朴素"假设是,给定类别标签,特征之间是相互独立的。这个简化假设在现实场景中通常并不完全准确,但它简化了计算过程,在实践中仍然可以表现良好。

高斯分布:

高斯朴素贝叶斯假设每个类别中的连续特征遵循高斯(正态)分布。这意味着在给定类别的情况下,特征的似然性被建模为一个由均值和标准差确定的正态分布。

参数估计:

要使用高斯朴素贝叶斯算法,需要为每个类别估计参数。对于每个类别中的每个特征,你需要基于训练数据估计均值和标准差。

分类:

对于具有特征值的新数据点,算法使用贝叶斯定理计算每个类别的后验概率。具有最高后验概率的类别被预测为数据点的最终类别标签。

公式


代码实现

python 复制代码
from sklearn.datasets import load_iris
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import cross_val_score, StratifiedKFold
import numpy as np

# Load example dataset (you can replace this with your own data)
data = load_iris()
X = data.data
y = data.target

# Create a Gaussian Naive Bayes model
gnb_model = GaussianNB()

# Create a StratifiedKFold cross-validation object
cvKFold = StratifiedKFold(n_splits=10, shuffle=True, random_state=0)

# Perform cross-validation using cross_val_score
scores = cross_val_score(gnb_model, X, y, cv=cvKFold)

# Print the cross-validation scores
print("Cross-validation scores:", scores)
print("Mean CV score:", np.mean(scores))
相关推荐
迦蓝叶17 小时前
Apache Jena 知识图谱持久化:选择适合你的存储方案
人工智能·开源·apache·知识图谱·持久化·存储·jena
muxue17817 小时前
Hadoop集群搭建(上):centos 7为例(已将将安装所需压缩包统一放在了/opt/software目录下)
大数据·hadoop·centos
阿里云大数据AI技术17 小时前
【跨国数仓迁移最佳实践11】基于 MaxCompute Resource & Quota策略优化实现资源管理性能与成本最优平衡
大数据
cyyt17 小时前
深度学习周报(11.3~11.9)
人工智能·深度学习
雍凉明月夜17 小时前
Ⅱ人工智能学习之深度学习(deep-learning)概述
人工智能·深度学习·学习
爱学习的程序媛17 小时前
【DeepSeek实战】高质量提示词的六种类型
人工智能·prompt
大千AI助手18 小时前
敏感性分析(Sensitivity Analysis)在机器学习中的应用详解
人工智能·机器学习·敏感性分析·sa·大千ai助手·sensitivity·可解释ai
编程小白_正在努力中18 小时前
从入门到精通:周志华《机器学习》第一、二章深度解析
人工智能·机器学习
编码追梦人18 小时前
基于 ESP32 与机器学习的智能语音家居控制系统
人工智能·机器学习
koo36418 小时前
李宏毅机器学习笔记
人工智能·笔记·机器学习