机器学习和数据挖掘02-Gaussian Naive Bayes

概念

贝叶斯定理:

贝叶斯定理是概率中的基本定理,描述了如何根据更多证据或信息更新假设的概率。在分类的上下文中,它用于计算给定特征集的类别的后验概率。

特征独立性假设:

高斯朴素贝叶斯中的"朴素"假设是,给定类别标签,特征之间是相互独立的。这个简化假设在现实场景中通常并不完全准确,但它简化了计算过程,在实践中仍然可以表现良好。

高斯分布:

高斯朴素贝叶斯假设每个类别中的连续特征遵循高斯(正态)分布。这意味着在给定类别的情况下,特征的似然性被建模为一个由均值和标准差确定的正态分布。

参数估计:

要使用高斯朴素贝叶斯算法,需要为每个类别估计参数。对于每个类别中的每个特征,你需要基于训练数据估计均值和标准差。

分类:

对于具有特征值的新数据点,算法使用贝叶斯定理计算每个类别的后验概率。具有最高后验概率的类别被预测为数据点的最终类别标签。

公式


代码实现

python 复制代码
from sklearn.datasets import load_iris
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import cross_val_score, StratifiedKFold
import numpy as np

# Load example dataset (you can replace this with your own data)
data = load_iris()
X = data.data
y = data.target

# Create a Gaussian Naive Bayes model
gnb_model = GaussianNB()

# Create a StratifiedKFold cross-validation object
cvKFold = StratifiedKFold(n_splits=10, shuffle=True, random_state=0)

# Perform cross-validation using cross_val_score
scores = cross_val_score(gnb_model, X, y, cv=cvKFold)

# Print the cross-validation scores
print("Cross-validation scores:", scores)
print("Mean CV score:", np.mean(scores))
相关推荐
臭东西的学习笔记4 小时前
论文学习——机器学习引导的蛋白质工程
人工智能·学习·机器学习
大王小生4 小时前
说说CSV文件和C#解析csv文件的几种方式
人工智能·c#·csv·csvhelper·csvreader
m0_462605224 小时前
第G3周:CGAN入门|生成手势图像
人工智能
bubiyoushang8885 小时前
基于LSTM神经网络的短期风速预测实现方案
人工智能·神经网络·lstm
中烟创新5 小时前
烟草专卖文书生成智能体与法规案卷评查智能体获评“年度技术最佳实践奖”
人工智能
得一录5 小时前
大模型中的多模态知识
人工智能·aigc
Github掘金计划5 小时前
Claude Work 开源平替来了:让 AI 代理从“终端命令“变成“产品体验“
人工智能·开源
ghgxm5205 小时前
Fastapi_00_学习方向 ——无编程基础如何用AI实现APP生成
人工智能·学习·fastapi
余俊晖6 小时前
3秒实现语音克隆的Qwen3-TTS的Qwen-TTS-Tokenizer和方法架构概览
人工智能·语音识别
森屿~~6 小时前
AI 手势识别系统:踩坑与实现全记录 (PyTorch + MediaPipe)
人工智能·pytorch·python