(Deep Learning)准确率和召回率的基础概念

算法模型极大的提升了对各类结果的预测效率。

【算法模型的本质】

算法模型的本质,是基于输入的各类变量因子,通过计算规则(模型or公式),得出预测结果。

典型的预测结果比如:

1.(通过历史行为&偏好预测)用户对某条信息点击的可能性

2.(通过历史行为&偏好预测)用户的自然人口属性如性别等

【如何判定模型的好坏】

准确率和召回率的评估,是验证算法模型好坏最常用的手段之一。

现在假设你和模型在玩问答游戏,每次拿一个样本,告诉他一些这个人的信息,让ta找出所有男生。

准确率=预测的准确量/召回量(找出量)。

比如:在所有样本中,模型预找出50人说他们都是男性,而找出的这波人里实际只有40人为男性,准确率=40/50=80%,用来衡量找出部分的准确度。

召回率=召回中的准确量/客观正确的量。

是拿真实的结果,和预测结果比对。比如:总共实际有60个男性,模型只找出了50个,那召回率=50/60=83.3%,用来衡量找出部分对实际真实部分的覆盖情况。

【准召判定,会有哪些情况?】

对预测结果的评估,于是就构成了以下四种集合。

如下图所示,刚才4种集合,图形摊开的话,就是这个样子的。

下图展示了模型过度保守的情况。

模型可以很保守,准确率达到了100%,但由于过度追求准确,漏掉了大量正确的结果。

下图表示过度召回。

召回率100%,确保了正确的集合都被召回,但由于召回了大量错误集合,所以准确率很低。

下图则表示理想情况------又多又准确!

相关推荐
高洁0117 小时前
大模型-详解 Vision Transformer (ViT) (2
深度学习·算法·aigc·transformer·知识图谱
亚马逊云开发者17 小时前
Agentic AI基础设施实践经验系列(六):Agent质量评估
人工智能
郁大锤17 小时前
OpenAI responses使用教程(三) ——Responses create python SDK 介绍
人工智能·python·ai·openai
余衫马17 小时前
聚类算法入门:像魔法一样把数据自动归类
人工智能·算法·机器学习·聚类
半臻(火白)17 小时前
Kimi K2 Thinking:开源时代的「思考代理」革命,重新定义AI复杂任务处理
人工智能
水如烟17 小时前
孤能子视角:“十五五“规划动力学分析
人工智能
AI人工智能+18 小时前
无缝对接与数据驱动:护照MRZ识别技术在智慧景区管理中的深度应用
人工智能·计算机视觉·ocr·护照mrz码识别
一水鉴天18 小时前
整体设计 全面梳理复盘之30 Transformer 九宫格三层架构 Designer 全部功能定稿(初稿)之2
前端·人工智能
luoganttcc18 小时前
DiffusionVLA 与BridgeVLA 相比 在 精度和成功率和效率上 有什么 优势
人工智能·算法
飞哥数智坊18 小时前
TRAE CN + K2 Thinking,我试着生成了一个简版的在线 PS
人工智能·ai编程·trae