(Deep Learning)准确率和召回率的基础概念

算法模型极大的提升了对各类结果的预测效率。

【算法模型的本质】

算法模型的本质,是基于输入的各类变量因子,通过计算规则(模型or公式),得出预测结果。

典型的预测结果比如:

1.(通过历史行为&偏好预测)用户对某条信息点击的可能性

2.(通过历史行为&偏好预测)用户的自然人口属性如性别等

【如何判定模型的好坏】

准确率和召回率的评估,是验证算法模型好坏最常用的手段之一。

现在假设你和模型在玩问答游戏,每次拿一个样本,告诉他一些这个人的信息,让ta找出所有男生。

准确率=预测的准确量/召回量(找出量)。

比如:在所有样本中,模型预找出50人说他们都是男性,而找出的这波人里实际只有40人为男性,准确率=40/50=80%,用来衡量找出部分的准确度。

召回率=召回中的准确量/客观正确的量。

是拿真实的结果,和预测结果比对。比如:总共实际有60个男性,模型只找出了50个,那召回率=50/60=83.3%,用来衡量找出部分对实际真实部分的覆盖情况。

【准召判定,会有哪些情况?】

对预测结果的评估,于是就构成了以下四种集合。

如下图所示,刚才4种集合,图形摊开的话,就是这个样子的。

下图展示了模型过度保守的情况。

模型可以很保守,准确率达到了100%,但由于过度追求准确,漏掉了大量正确的结果。

下图表示过度召回。

召回率100%,确保了正确的集合都被召回,但由于召回了大量错误集合,所以准确率很低。

下图则表示理想情况------又多又准确!

相关推荐
Joseit2 分钟前
从零打造AI面试系统全栈开发
人工智能·面试·职场和发展
小猪猪_110 分钟前
多视角学习、多任务学习,迁移学习
人工智能·迁移学习
飞哥数智坊19 分钟前
AI编程实战:Cursor 1.0 上手实测,刀更锋利马更快
人工智能·cursor
vlln24 分钟前
【论文解读】ReAct:从思考脱离行动, 到行动反馈思考
人工智能·深度学习·机器学习
qq_4309085741 分钟前
华为ICT和AI智能应用
人工智能·华为
lqj_本人43 分钟前
鸿蒙OS&UniApp结合机器学习打造智能图像分类应用:HarmonyOS实践指南#三方框架 #Uniapp
机器学习·uni-app·harmonyos
土豆杨6261 小时前
隐藏层-机器学习
python·机器学习
试剂界的爱马仕1 小时前
软珊瑚成分 CI-A:靶向口腔癌细胞的 “氧化利剑” 与 ERK 密码
网络·人工智能·科技·机器学习·ci/cd·ai写作
小王毕业啦2 小时前
2022年 国内税务年鉴PDF电子版Excel
大数据·人工智能·数据挖掘·数据分析·数据统计·年鉴·社科数据
1296004522 小时前
机器翻译模型笔记
人工智能·笔记·机器翻译