(Deep Learning)准确率和召回率的基础概念

算法模型极大的提升了对各类结果的预测效率。

【算法模型的本质】

算法模型的本质,是基于输入的各类变量因子,通过计算规则(模型or公式),得出预测结果。

典型的预测结果比如:

1.(通过历史行为&偏好预测)用户对某条信息点击的可能性

2.(通过历史行为&偏好预测)用户的自然人口属性如性别等

【如何判定模型的好坏】

准确率和召回率的评估,是验证算法模型好坏最常用的手段之一。

现在假设你和模型在玩问答游戏,每次拿一个样本,告诉他一些这个人的信息,让ta找出所有男生。

准确率=预测的准确量/召回量(找出量)。

比如:在所有样本中,模型预找出50人说他们都是男性,而找出的这波人里实际只有40人为男性,准确率=40/50=80%,用来衡量找出部分的准确度。

召回率=召回中的准确量/客观正确的量。

是拿真实的结果,和预测结果比对。比如:总共实际有60个男性,模型只找出了50个,那召回率=50/60=83.3%,用来衡量找出部分对实际真实部分的覆盖情况。

【准召判定,会有哪些情况?】

对预测结果的评估,于是就构成了以下四种集合。

如下图所示,刚才4种集合,图形摊开的话,就是这个样子的。

下图展示了模型过度保守的情况。

模型可以很保守,准确率达到了100%,但由于过度追求准确,漏掉了大量正确的结果。

下图表示过度召回。

召回率100%,确保了正确的集合都被召回,但由于召回了大量错误集合,所以准确率很低。

下图则表示理想情况------又多又准确!

相关推荐
syso_稻草人33 分钟前
基于 ComfyUI + Wan2.2 animate实现 AI 视频人物换衣:完整工作流解析与资源整合(附一键包)
人工智能·音视频
qq_4369621837 分钟前
AI+BI工具全景指南:重构企业数据决策效能
人工智能·重构
sali-tec40 分钟前
C# 基于halcon的视觉工作流-章48-短路断路
开发语言·图像处理·人工智能·算法·计算机视觉
cuicuiniu52141 分钟前
浩辰CAD 看图王 推出「图小智AI客服」,重构设计服务新体验
人工智能·cad·cad看图·cad看图软件·cad看图王
SSO_Crown42 分钟前
2025年HR 数字化转型:从工具应用到组织能力重构的深度变革
人工智能·重构
无风听海43 分钟前
神经网络之单词的语义表示
人工智能·深度学习·神经网络
我叫侯小科1 小时前
YOLOv4:目标检测界的 “集大成者”
人工智能·yolo·目标检测
小姐姐味道2 小时前
AI应用时代:多读论文勤尝试,少做讨论少分享,是活下去的关键
人工智能·程序员·开源
星期天要睡觉2 小时前
大模型(Large Language Model, LLM)——什么是大模型,大模型的基本原理、架构、流程
人工智能·python·ai·语言模型
墨利昂2 小时前
机器学习和深度学习模型训练流程
人工智能·深度学习·机器学习