(Deep Learning)准确率和召回率的基础概念

算法模型极大的提升了对各类结果的预测效率。

【算法模型的本质】

算法模型的本质,是基于输入的各类变量因子,通过计算规则(模型or公式),得出预测结果。

典型的预测结果比如:

1.(通过历史行为&偏好预测)用户对某条信息点击的可能性

2.(通过历史行为&偏好预测)用户的自然人口属性如性别等

【如何判定模型的好坏】

准确率和召回率的评估,是验证算法模型好坏最常用的手段之一。

现在假设你和模型在玩问答游戏,每次拿一个样本,告诉他一些这个人的信息,让ta找出所有男生。

准确率=预测的准确量/召回量(找出量)。

比如:在所有样本中,模型预找出50人说他们都是男性,而找出的这波人里实际只有40人为男性,准确率=40/50=80%,用来衡量找出部分的准确度。

召回率=召回中的准确量/客观正确的量。

是拿真实的结果,和预测结果比对。比如:总共实际有60个男性,模型只找出了50个,那召回率=50/60=83.3%,用来衡量找出部分对实际真实部分的覆盖情况。

【准召判定,会有哪些情况?】

对预测结果的评估,于是就构成了以下四种集合。

如下图所示,刚才4种集合,图形摊开的话,就是这个样子的。

下图展示了模型过度保守的情况。

模型可以很保守,准确率达到了100%,但由于过度追求准确,漏掉了大量正确的结果。

下图表示过度召回。

召回率100%,确保了正确的集合都被召回,但由于召回了大量错误集合,所以准确率很低。

下图则表示理想情况------又多又准确!

相关推荐
shao91851615 分钟前
Gradio全解10——Streaming:流式传输的音频应用(7)——ElevenLabs:高级智能语音技术
人工智能·gradio·tts·streaming·elevenlabs·stt·eleven music
Monkey的自我迭代18 分钟前
基于OpenCV的银行卡号识别系统:从原理到实现
人工智能·opencv·计算机视觉
会写代码的饭桶39 分钟前
通俗理解 LSTM 的三门机制:从剧情记忆到科学原理
人工智能·rnn·lstm·transformer
算家计算1 小时前
ComfyUI-MultiTalk本地部署教程:创新L-RoPE机制破解多音频流绑定难题,定义多人对话视频生成新SOTA!
人工智能·开源
Stestack1 小时前
人工智能常见分类
人工智能·分类·数据挖掘
量子位1 小时前
18岁女孩做养老机器人,上线2天卖爆了
人工智能·llm
小林学习编程1 小时前
2025年最新AI大模型原理和应用面试题
人工智能·ai·面试
数据分析能量站1 小时前
大模型为什么会有幻觉?-Why Language Models Hallucinate
人工智能
小白狮ww1 小时前
RStudio 教程:以抑郁量表测评数据分析为例
人工智能·算法·机器学习
沧海一粟青草喂马1 小时前
抖音批量上传视频怎么弄?抖音矩阵账号管理的专业指南
大数据·人工智能·矩阵