(Deep Learning)准确率和召回率的基础概念

算法模型极大的提升了对各类结果的预测效率。

【算法模型的本质】

算法模型的本质,是基于输入的各类变量因子,通过计算规则(模型or公式),得出预测结果。

典型的预测结果比如:

1.(通过历史行为&偏好预测)用户对某条信息点击的可能性

2.(通过历史行为&偏好预测)用户的自然人口属性如性别等

【如何判定模型的好坏】

准确率和召回率的评估,是验证算法模型好坏最常用的手段之一。

现在假设你和模型在玩问答游戏,每次拿一个样本,告诉他一些这个人的信息,让ta找出所有男生。

准确率=预测的准确量/召回量(找出量)。

比如:在所有样本中,模型预找出50人说他们都是男性,而找出的这波人里实际只有40人为男性,准确率=40/50=80%,用来衡量找出部分的准确度。

召回率=召回中的准确量/客观正确的量。

是拿真实的结果,和预测结果比对。比如:总共实际有60个男性,模型只找出了50个,那召回率=50/60=83.3%,用来衡量找出部分对实际真实部分的覆盖情况。

【准召判定,会有哪些情况?】

对预测结果的评估,于是就构成了以下四种集合。

如下图所示,刚才4种集合,图形摊开的话,就是这个样子的。

下图展示了模型过度保守的情况。

模型可以很保守,准确率达到了100%,但由于过度追求准确,漏掉了大量正确的结果。

下图表示过度召回。

召回率100%,确保了正确的集合都被召回,但由于召回了大量错误集合,所以准确率很低。

下图则表示理想情况------又多又准确!

相关推荐
lilye662 小时前
精益数据分析(10/126):深度剖析数据指标,驱动创业决策
大数据·人工智能·数据分析
CodeJourney.4 小时前
Python数据可视化领域的卓越工具:深入剖析Seaborn、Plotly与Pyecharts
人工智能·算法·信息可视化
Acrelgq234 小时前
工厂能耗系统智能化解决方案 —— 安科瑞企业能源管控平台
大数据·人工智能·物联网
Lucifer三思而后行4 小时前
零基础玩转AI数学建模:从理论到实战
人工智能·数学建模
_一条咸鱼_6 小时前
Python 数据类型之可变与不可变类型详解(十)
人工智能·python·面试
_一条咸鱼_6 小时前
Python 入门之基本运算符(六)
python·深度学习·面试
_一条咸鱼_6 小时前
Python 语法入门之基本数据类型(四)
人工智能·深度学习·面试
2201_754918416 小时前
卷积神经网络--手写数字识别
人工智能·神经网络·cnn
_一条咸鱼_6 小时前
Python 用户交互与格式化输出(五)
人工智能·深度学习·面试
_一条咸鱼_6 小时前
Python 流程控制之 for 循环(九)
人工智能·python·面试