LabVIEW计算测量路径输出端随机变量的概率分布密度

LabVIEW计算测量路径输出端随机变量的概率分布密度

今天,开发算法和软件来解决计量综合的问题,即为特定问题寻找最佳测量算法。提出了算法支持,以便从计量上综合测量路径并确定所开发测量仪器的测量误差。测量路径由串联的几个块组成,每个块都有自己的转换特性,而转换特性又会因外部影响而改变。上述外部影响会导致测量路径输出端的误差增加。如果知道块转换的特征,以及输入随机变量的概率分布密度,则可以确定测量块输出处的概率分布密度。通过迭代搜索测量单元输出端随机变量的分布密度,可以估计测量路径输出端的测量误差。

考虑一个类似的例子,其中误差的乘法分量可用,即转换特性如下所示X2=(k⋅X1)2.第一个块输出处的概率分布密度如下:ω(X2)=ω(X1)/(2k2X1).图 显示了一个图表,其中显示了X2乘法分量等于零且也等于 0.8 的转换特性(分别为绿色实线和紫色虚线)。横坐标显示随机变量 X1,它服从正态分布规律,期望 M(Xl)=2和方差D(X1)=0.01.概率分布密度ω(X2)和ω(X1)分别显示为黑线和红线。蓝色虚线表示测量块 1 输出端的概率分布密度,具有可用的乘法分量。

该图显示随机变量 X2使用乘法误差分量 k,与无影响的情况相比看起来更平坦。概率分布密度的形状ω(X2)也变了。

LabVIEW用于计量综合的算法支持和软件将简化测量仪器的仿真任务,其中应考虑到测量块的转换特性,无论是否受到外部影响。该任务的软件实施将使模拟单个模块和整个测量路径成为可能;这将大大加快测量仪器的计量合成过程。

这是LabVIEW的一个应用,更多的开发案例,欢迎登录北京瀚文网星官网,了解更多信息。有需要LabVIEW项目合作开发,请与我们联系。

相关推荐
鲸鱼在dn9 小时前
大型语言模型推理能力评估——李宏毅2025大模型课程第9讲内容
人工智能·语言模型·自然语言处理
笨鸟笃行9 小时前
人工智能备考小结篇(后续会更新对应的题解)
人工智能
不当菜鸡的程序媛9 小时前
Flow Matching|什么是“预测速度场 vt=ε−x”?
人工智能·算法·机器学习
kyle~9 小时前
数学基础---四元数
人工智能·数学·机器人·旋转
PKNLP9 小时前
14.大语言模型微调语料构建
人工智能·语言模型·模型微调
Wu Liuqi9 小时前
【大模型学习4】大语言模型(LLM)详解
人工智能·学习·语言模型·大模型
SEOETC9 小时前
AIGC|杭州AI优化企业新榜单与选择指南
人工智能·ai·aigc
sali-tec9 小时前
C# 基于halcon的视觉工作流-章58-输出点云图
开发语言·人工智能·算法·计算机视觉·c#
小毅&Nora9 小时前
【智能体】扣子平台 ① 构建智能体工作流:从提示词到JSON配置的全流程实践
人工智能
AI街潜水的八角10 小时前
深度学习十种食物分类系统1:数据集说明(含下载链接)
人工智能·深度学习·分类