LabVIEW计算测量路径输出端随机变量的概率分布密度

LabVIEW计算测量路径输出端随机变量的概率分布密度

今天,开发算法和软件来解决计量综合的问题,即为特定问题寻找最佳测量算法。提出了算法支持,以便从计量上综合测量路径并确定所开发测量仪器的测量误差。测量路径由串联的几个块组成,每个块都有自己的转换特性,而转换特性又会因外部影响而改变。上述外部影响会导致测量路径输出端的误差增加。如果知道块转换的特征,以及输入随机变量的概率分布密度,则可以确定测量块输出处的概率分布密度。通过迭代搜索测量单元输出端随机变量的分布密度,可以估计测量路径输出端的测量误差。

考虑一个类似的例子,其中误差的乘法分量可用,即转换特性如下所示X2=(k⋅X1)2.第一个块输出处的概率分布密度如下:ω(X2)=ω(X1)/(2k2X1).图 显示了一个图表,其中显示了X2乘法分量等于零且也等于 0.8 的转换特性(分别为绿色实线和紫色虚线)。横坐标显示随机变量 X1,它服从正态分布规律,期望 M(Xl)=2和方差D(X1)=0.01.概率分布密度ω(X2)和ω(X1)分别显示为黑线和红线。蓝色虚线表示测量块 1 输出端的概率分布密度,具有可用的乘法分量。

该图显示随机变量 X2使用乘法误差分量 k,与无影响的情况相比看起来更平坦。概率分布密度的形状ω(X2)也变了。

LabVIEW用于计量综合的算法支持和软件将简化测量仪器的仿真任务,其中应考虑到测量块的转换特性,无论是否受到外部影响。该任务的软件实施将使模拟单个模块和整个测量路径成为可能;这将大大加快测量仪器的计量合成过程。

这是LabVIEW的一个应用,更多的开发案例,欢迎登录北京瀚文网星官网,了解更多信息。有需要LabVIEW项目合作开发,请与我们联系。

相关推荐
橙子小哥的代码世界13 分钟前
【计算机视觉基础CV-图像分类】05 - 深入解析ResNet与GoogLeNet:从基础理论到实际应用
图像处理·人工智能·深度学习·神经网络·计算机视觉·分类·卷积神经网络
leigm12314 分钟前
深度学习使用Anaconda打开Jupyter Notebook编码
人工智能·深度学习·jupyter
Aileen_0v02 小时前
【玩转OCR | 腾讯云智能结构化OCR在图像增强与发票识别中的应用实践】
android·java·人工智能·云计算·ocr·腾讯云·玩转腾讯云ocr
FreedomLeo13 小时前
Python机器学习笔记(十三、k均值聚类)
python·机器学习·kmeans·聚类
阿正的梦工坊3 小时前
深入理解 PyTorch 的 view() 函数:以多头注意力机制(Multi-Head Attention)为例 (中英双语)
人工智能·pytorch·python
Ainnle3 小时前
GPT-O3:简单介绍
人工智能
OceanBase数据库官方博客4 小时前
向量检索+大语言模型,免费搭建基于专属知识库的 RAG 智能助手
人工智能·oceanbase·分布式数据库·向量数据库·rag
测试者家园4 小时前
ChatGPT助力数据可视化与数据分析效率的提升(一)
软件测试·人工智能·信息可视化·chatgpt·数据挖掘·数据分析·用chatgpt做软件测试
Loving_enjoy5 小时前
ChatGPT详解
人工智能·自然语言处理