LabVIEW计算测量路径输出端随机变量的概率分布密度

LabVIEW计算测量路径输出端随机变量的概率分布密度

今天,开发算法和软件来解决计量综合的问题,即为特定问题寻找最佳测量算法。提出了算法支持,以便从计量上综合测量路径并确定所开发测量仪器的测量误差。测量路径由串联的几个块组成,每个块都有自己的转换特性,而转换特性又会因外部影响而改变。上述外部影响会导致测量路径输出端的误差增加。如果知道块转换的特征,以及输入随机变量的概率分布密度,则可以确定测量块输出处的概率分布密度。通过迭代搜索测量单元输出端随机变量的分布密度,可以估计测量路径输出端的测量误差。

考虑一个类似的例子,其中误差的乘法分量可用,即转换特性如下所示X2=(k⋅X1)2.第一个块输出处的概率分布密度如下:ω(X2)=ω(X1)/(2k2X1).图 显示了一个图表,其中显示了X2乘法分量等于零且也等于 0.8 的转换特性(分别为绿色实线和紫色虚线)。横坐标显示随机变量 X1,它服从正态分布规律,期望 M(Xl)=2和方差D(X1)=0.01.概率分布密度ω(X2)和ω(X1)分别显示为黑线和红线。蓝色虚线表示测量块 1 输出端的概率分布密度,具有可用的乘法分量。

该图显示随机变量 X2使用乘法误差分量 k,与无影响的情况相比看起来更平坦。概率分布密度的形状ω(X2)也变了。

LabVIEW用于计量综合的算法支持和软件将简化测量仪器的仿真任务,其中应考虑到测量块的转换特性,无论是否受到外部影响。该任务的软件实施将使模拟单个模块和整个测量路径成为可能;这将大大加快测量仪器的计量合成过程。

这是LabVIEW的一个应用,更多的开发案例,欢迎登录北京瀚文网星官网,了解更多信息。有需要LabVIEW项目合作开发,请与我们联系。

相关推荐
natide4 分钟前
表示/嵌入差异-7-间隔/边际对齐(Alignment Margin)
人工智能·深度学习·算法·机器学习·自然语言处理·知识图谱
90后小陈老师5 分钟前
AI使用手册 | 提示词工程
人工智能
njsgcs33 分钟前
用modelscope运行grounding dino
人工智能·pytorch·深度学习·modelscope·groundingdino
学习3人组1 小时前
主流深度学习目标检测模型性能对比表
人工智能·深度学习·目标检测
非著名架构师1 小时前
2026年元旦气象营销策略:天气数据如何精准驱动节日销售增长与商业决策
人工智能·风电功率预测·光伏功率预测·高精度天气预报数据·galeweather.cn·高精度气象
发光发热吧1 小时前
2025年终总结:AI浪潮下的一年
人工智能·agent·年终总结
数据猿1 小时前
【金猿人物展】海尔智慧家尹德帅:以数据智能重构智慧家庭生态,引领场景品牌数字化转型新范式
大数据·人工智能·重构
想要成为计算机高手1 小时前
VLA中人类数据迁移到机器人后的涌现 -- physical intelligence -- 2025.12.16
人工智能·机器人·具身智能·vla
路人与大师1 小时前
大规模多变量AutoML调参实验报告
人工智能·深度学习·机器学习
MoonBit月兔1 小时前
生态影响力持续提升,MoonBit 登 2025 中国技术品牌影响力榜单
大数据·人工智能·ai编程·moonbit