LabVIEW计算测量路径输出端随机变量的概率分布密度

LabVIEW计算测量路径输出端随机变量的概率分布密度

今天,开发算法和软件来解决计量综合的问题,即为特定问题寻找最佳测量算法。提出了算法支持,以便从计量上综合测量路径并确定所开发测量仪器的测量误差。测量路径由串联的几个块组成,每个块都有自己的转换特性,而转换特性又会因外部影响而改变。上述外部影响会导致测量路径输出端的误差增加。如果知道块转换的特征,以及输入随机变量的概率分布密度,则可以确定测量块输出处的概率分布密度。通过迭代搜索测量单元输出端随机变量的分布密度,可以估计测量路径输出端的测量误差。

考虑一个类似的例子,其中误差的乘法分量可用,即转换特性如下所示X2=(k⋅X1)2.第一个块输出处的概率分布密度如下:ω(X2)=ω(X1)/(2k2X1).图 显示了一个图表,其中显示了X2乘法分量等于零且也等于 0.8 的转换特性(分别为绿色实线和紫色虚线)。横坐标显示随机变量 X1,它服从正态分布规律,期望 M(Xl)=2和方差D(X1)=0.01.概率分布密度ω(X2)和ω(X1)分别显示为黑线和红线。蓝色虚线表示测量块 1 输出端的概率分布密度,具有可用的乘法分量。

该图显示随机变量 X2使用乘法误差分量 k,与无影响的情况相比看起来更平坦。概率分布密度的形状ω(X2)也变了。

LabVIEW用于计量综合的算法支持和软件将简化测量仪器的仿真任务,其中应考虑到测量块的转换特性,无论是否受到外部影响。该任务的软件实施将使模拟单个模块和整个测量路径成为可能;这将大大加快测量仪器的计量合成过程。

这是LabVIEW的一个应用,更多的开发案例,欢迎登录北京瀚文网星官网,了解更多信息。有需要LabVIEW项目合作开发,请与我们联系。

相关推荐
JeffDingAI10 分钟前
【Datawhale学习笔记】RLHF微调技术及实践
人工智能·笔记·学习
CourserLi22 分钟前
【AI 解题】Yusa的密码学课堂 2026.1.25
人工智能·密码学
人工智能AI技术24 分钟前
【Agent从入门到实践】33 集成多工具,实现Agent的工具选择与执行
人工智能·python
逐梦苍穹26 分钟前
Clawdbot vs ClaudeCode:7x24运行方案全对比
人工智能·claudecode·clawdbot
AI街潜水的八角31 分钟前
语义分割实战——基于EGEUNet神经网络印章分割系统3:含训练测试代码、数据集和GUI交互界面
人工智能·深度学习·神经网络
三块可乐两块冰42 分钟前
【第二十七周】机器学习笔记二十八
笔记·机器学习
MasonYyp1 小时前
DSPy优化提示词
大数据·人工智能
互联网科技看点1 小时前
园世骨传导耳机:专业之选,X7与Betapro引领游泳运动双潮流
人工智能
大公产经晚间消息1 小时前
天九企服董事长戈峻出席欧洲经贸峰会“大进步日”
大数据·人工智能·物联网
deephub1 小时前
为什么标准化要用均值0和方差1?
人工智能·python·机器学习·标准化