LabVIEW计算测量路径输出端随机变量的概率分布密度

LabVIEW计算测量路径输出端随机变量的概率分布密度

今天,开发算法和软件来解决计量综合的问题,即为特定问题寻找最佳测量算法。提出了算法支持,以便从计量上综合测量路径并确定所开发测量仪器的测量误差。测量路径由串联的几个块组成,每个块都有自己的转换特性,而转换特性又会因外部影响而改变。上述外部影响会导致测量路径输出端的误差增加。如果知道块转换的特征,以及输入随机变量的概率分布密度,则可以确定测量块输出处的概率分布密度。通过迭代搜索测量单元输出端随机变量的分布密度,可以估计测量路径输出端的测量误差。

考虑一个类似的例子,其中误差的乘法分量可用,即转换特性如下所示X2=(k⋅X1)2.第一个块输出处的概率分布密度如下:ω(X2)=ω(X1)/(2k2X1).图 显示了一个图表,其中显示了X2乘法分量等于零且也等于 0.8 的转换特性(分别为绿色实线和紫色虚线)。横坐标显示随机变量 X1,它服从正态分布规律,期望 M(Xl)=2和方差D(X1)=0.01.概率分布密度ω(X2)和ω(X1)分别显示为黑线和红线。蓝色虚线表示测量块 1 输出端的概率分布密度,具有可用的乘法分量。

该图显示随机变量 X2使用乘法误差分量 k,与无影响的情况相比看起来更平坦。概率分布密度的形状ω(X2)也变了。

LabVIEW用于计量综合的算法支持和软件将简化测量仪器的仿真任务,其中应考虑到测量块的转换特性,无论是否受到外部影响。该任务的软件实施将使模拟单个模块和整个测量路径成为可能;这将大大加快测量仪器的计量合成过程。

这是LabVIEW的一个应用,更多的开发案例,欢迎登录北京瀚文网星官网,了解更多信息。有需要LabVIEW项目合作开发,请与我们联系。

相关推荐
shadowcz0075 分钟前
关于GEO的研究总结#使用 Notebooklm 来研究论文和整理报告#PDF分享
人工智能·pdf
生成论实验室10 分钟前
即事是道:一种基于生成论的分布式体验存在论
人工智能·分布式·科技·神经网络·信息与通信
锋行天下6 小时前
公司内网部署大模型的探索之路
前端·人工智能·后端
背心2块钱包邮7 小时前
第7节——积分技巧(Integration Techniques)-代换积分法
人工智能·python·深度学习·matplotlib
无心水8 小时前
【分布式利器:大厂技术】4、字节跳动高性能架构:Kitex+Hertz+BytePS,实时流与AI的极致优化
人工智能·分布式·架构·kitex·分布式利器·字节跳动分布式·byteps
阿正的梦工坊8 小时前
DreamGym:通过经验合成实现代理学习的可扩展化
人工智能·算法·大模型·llm
湘-枫叶情缘8 小时前
人脑生物芯片作为“数字修炼世界”终极载体的技术前景、伦理挑战与实现路径
人工智能
Aaron15888 小时前
侦察、测向、识别、干扰一体化平台系统技术实现
人工智能·fpga开发·硬件架构·边缘计算·信息与通信·射频工程·基带工程
维维180-3121-14558 小时前
作物模型的未来:DSSAT与机器学习、遥感及多尺度模拟的融合
人工智能·生态学·农业遥感·作物模型·地理学·农学
阿杰学AI9 小时前
AI核心知识38——大语言模型之Alignment(简洁且通俗易懂版)
人工智能·安全·ai·语言模型·aigc·ai对齐·alignment