torch.bmm功能解读

bmmbatched matrix multiple 的简写,即批量矩阵乘法,矩阵是二维的,加上batch一个维度,因此该函数的输入必须是两个三维的 tensor,三个维度代表的含义分别是:(批量,行,列)。

对于 torch.bmm(tensor_a, tensor_b) 而言,

tensor_ashape为 (a, b, c)

tensor_bshape为 (d, e, f)

要求 a = d, c = e,即批量数相同,在计算时tensor_a 的第 i 个矩阵与 tensor_b 的第 i 个矩阵作乘法,i = 1, 2, 3, ..., a。因此为了矩阵乘法能够进行,c 和 e 必须相同。计算过程如图1所示。
图1. bmm计算过程

测试代码如下:

python 复制代码
import torch

BatchMatrix1 = torch.randn((3,4,3))
BatchMatrix2 = torch.randn((3,3,4))

BatchMatrixMultiple = torch.bmm(BatchMatrix1, BatchMatrix2)

print(BatchMatrixMultiple.shape)

输出为,与图1中绿色矩阵对应。

相关推荐
长桥夜波14 分钟前
机器学习日报21
人工智能·机器学习
rchmin24 分钟前
Prompt Engineering 从入门到精通的系统学习路径
人工智能·学习·prompt
小张成长计划..29 分钟前
【C++】16:模板进阶
c++·算法
ACE198530 分钟前
AI Agent 设计模式深度解析:提示链(Prompt Chaining)模式
人工智能·设计模式·prompt
AndrewHZ31 分钟前
【图像处理基石】如何使用大模型进行图像处理工作?
图像处理·人工智能·深度学习·算法·llm·stablediffusion·可控性
AndrewHZ35 分钟前
【图像处理基石】图像处理的基础理论体系介绍
图像处理·人工智能·算法·计算机视觉·cv·理论体系
人邮异步社区1 小时前
如何有效地利用AI辅助编程,提高编程效率?
人工智能·深度学习·ai编程
许泽宇的技术分享1 小时前
当AI Agent遇上.NET:微软Agent Framework的架构奥秘与实战启示
人工智能·microsoft·.net
爱笑的眼睛111 小时前
PyTorch Lightning:重新定义深度学习工程实践
java·人工智能·python·ai