torch.bmm功能解读

bmmbatched matrix multiple 的简写,即批量矩阵乘法,矩阵是二维的,加上batch一个维度,因此该函数的输入必须是两个三维的 tensor,三个维度代表的含义分别是:(批量,行,列)。

对于 torch.bmm(tensor_a, tensor_b) 而言,

tensor_ashape为 (a, b, c)

tensor_bshape为 (d, e, f)

要求 a = d, c = e,即批量数相同,在计算时tensor_a 的第 i 个矩阵与 tensor_b 的第 i 个矩阵作乘法,i = 1, 2, 3, ..., a。因此为了矩阵乘法能够进行,c 和 e 必须相同。计算过程如图1所示。
图1. bmm计算过程

测试代码如下:

python 复制代码
import torch

BatchMatrix1 = torch.randn((3,4,3))
BatchMatrix2 = torch.randn((3,3,4))

BatchMatrixMultiple = torch.bmm(BatchMatrix1, BatchMatrix2)

print(BatchMatrixMultiple.shape)

输出为,与图1中绿色矩阵对应。

相关推荐
hay_lee2 分钟前
Spring AI实现对话聊天-流式输出
java·人工智能·ollama·spring ai
塔中妖10 分钟前
CANN深度解读:从算子库看AI计算的底层架构
人工智能·架构
铁蛋AI编程实战10 分钟前
MemoryLake 实战:构建超长对话 AI 助手的完整代码教程
人工智能·python·microsoft·机器学习
weixin_5498083611 分钟前
2026 中国 AI 招聘系统市场观察:从效率工具到智能体协同,招聘正被重新定义
人工智能
张较瘦_14 分钟前
[论文阅读] AI | 用机器学习给深度学习库“体检”:大幅提升测试效率的新思路
论文阅读·人工智能·机器学习
杜子不疼.17 分钟前
CANN图引擎GE的编译优化与高效执行机制深度解析
人工智能·深度学习
池央18 分钟前
CANN 诊断工具链深度解析:oam-tools 的自动化故障信息收集、软硬件状态快照与 AI Core 错误溯源机制
运维·人工智能·自动化
深圳行云创新19 分钟前
采用 TitanIDE 3.0 开展团队级 AI-Coding 优势分析
人工智能
算法狗219 分钟前
大模型面试题:大模型的训练和推理中显存和计算量的情况
人工智能·深度学习·机器学习·语言模型
AI职业加油站23 分钟前
职业提升之路:我的大数据分析师学习与备考分享
大数据·人工智能·经验分享·学习·职场和发展·数据分析