torch.bmm功能解读

bmmbatched matrix multiple 的简写,即批量矩阵乘法,矩阵是二维的,加上batch一个维度,因此该函数的输入必须是两个三维的 tensor,三个维度代表的含义分别是:(批量,行,列)。

对于 torch.bmm(tensor_a, tensor_b) 而言,

tensor_ashape为 (a, b, c)

tensor_bshape为 (d, e, f)

要求 a = d, c = e,即批量数相同,在计算时tensor_a 的第 i 个矩阵与 tensor_b 的第 i 个矩阵作乘法,i = 1, 2, 3, ..., a。因此为了矩阵乘法能够进行,c 和 e 必须相同。计算过程如图1所示。
图1. bmm计算过程

测试代码如下:

python 复制代码
import torch

BatchMatrix1 = torch.randn((3,4,3))
BatchMatrix2 = torch.randn((3,3,4))

BatchMatrixMultiple = torch.bmm(BatchMatrix1, BatchMatrix2)

print(BatchMatrixMultiple.shape)

输出为,与图1中绿色矩阵对应。

相关推荐
roman_日积跬步-终至千里11 分钟前
【强化学习基础(5)】策略搜索与学徒学习:从专家行为中学习加速学习过程
人工智能
做怪小疯子1 小时前
LeetCode 热题 100——矩阵——旋转图像
算法·leetcode·矩阵
努力学习的小廉1 小时前
我爱学算法之—— BFS之最短路径问题
算法·宽度优先
杭州泽沃电子科技有限公司2 小时前
在线监测:为医药精细化工奠定安全、合规与质量基石
运维·人工智能·物联网·安全·智能监测
高山上有一只小老虎2 小时前
构造A+B
java·算法
GIS数据转换器2 小时前
GIS+大模型助力安全风险精细化管理
大数据·网络·人工智能·安全·无人机
木头左2 小时前
缺失值插补策略比较线性回归vs.相邻填充在LSTM输入层的性能差异分析
算法·线性回归·lstm
OJAC1112 小时前
AI跨界潮:金融精英与应届生正涌入人工智能领域
人工智能·金融
sin_hielo2 小时前
leetcode 2435
数据结构·算法·leetcode
机器之心2 小时前
Adam的稳+Muon的快?华为诺亚开源ROOT破解大模型训练「既要又要」的两难困境
人工智能·openai