torch.bmm功能解读

bmmbatched matrix multiple 的简写,即批量矩阵乘法,矩阵是二维的,加上batch一个维度,因此该函数的输入必须是两个三维的 tensor,三个维度代表的含义分别是:(批量,行,列)。

对于 torch.bmm(tensor_a, tensor_b) 而言,

tensor_ashape为 (a, b, c)

tensor_bshape为 (d, e, f)

要求 a = d, c = e,即批量数相同,在计算时tensor_a 的第 i 个矩阵与 tensor_b 的第 i 个矩阵作乘法,i = 1, 2, 3, ..., a。因此为了矩阵乘法能够进行,c 和 e 必须相同。计算过程如图1所示。
图1. bmm计算过程

测试代码如下:

python 复制代码
import torch

BatchMatrix1 = torch.randn((3,4,3))
BatchMatrix2 = torch.randn((3,3,4))

BatchMatrixMultiple = torch.bmm(BatchMatrix1, BatchMatrix2)

print(BatchMatrixMultiple.shape)

输出为,与图1中绿色矩阵对应。

相关推荐
FlagOS智算系统软件栈2 小时前
与创新者同频!与FlagOS共赴开源之约
人工智能·ai·开源
侯小啾2 小时前
【03】C语言 强制类型转换 与 进制转换
c语言·数据结构·算法
Xの哲學3 小时前
Linux NAPI 架构详解
linux·网络·算法·架构·边缘计算
加油吧zkf4 小时前
循环神经网络 RNN:从时间序列到自然语言的秘密武器
人工智能·rnn·自然语言处理
koo3645 小时前
李宏毅机器学习笔记30
人工智能·笔记·机器学习
长桥夜波5 小时前
机器学习日报02
人工智能·机器学习·neo4j
Elastic 中国社区官方博客5 小时前
介绍 Elastic 的 Agent Builder - 9.2
大数据·运维·人工智能·elasticsearch·搜索引擎·ai·全文检索
拓端研究室5 小时前
专题:2025年制造业数智化发展白皮书:数字化转型与智能制造|附130+份报告PDF、数据、绘图模板汇总下载
人工智能
就不爱吃大米饭6 小时前
ChatGPT官方AI浏览器正式推出:ChatGPT Atlas浏览器功能及操作全解!
人工智能·chatgpt
tainshuai6 小时前
YOLOv4 实战指南:单 GPU 训练的目标检测利器
yolo·目标检测·机器学习