torch.bmm功能解读

bmmbatched matrix multiple 的简写,即批量矩阵乘法,矩阵是二维的,加上batch一个维度,因此该函数的输入必须是两个三维的 tensor,三个维度代表的含义分别是:(批量,行,列)。

对于 torch.bmm(tensor_a, tensor_b) 而言,

tensor_ashape为 (a, b, c)

tensor_bshape为 (d, e, f)

要求 a = d, c = e,即批量数相同,在计算时tensor_a 的第 i 个矩阵与 tensor_b 的第 i 个矩阵作乘法,i = 1, 2, 3, ..., a。因此为了矩阵乘法能够进行,c 和 e 必须相同。计算过程如图1所示。
图1. bmm计算过程

测试代码如下:

python 复制代码
import torch

BatchMatrix1 = torch.randn((3,4,3))
BatchMatrix2 = torch.randn((3,3,4))

BatchMatrixMultiple = torch.bmm(BatchMatrix1, BatchMatrix2)

print(BatchMatrixMultiple.shape)

输出为,与图1中绿色矩阵对应。

相关推荐
机器之心13 小时前
从推荐算法优化到AI4S、Pico和大模型,杨震原长文揭秘字节跳动的技术探索
人工智能·openai
johnny23313 小时前
AI加持测试工具汇总:Strix、
人工智能·测试工具
机器之心13 小时前
哈工大深圳团队推出Uni-MoE-2.0-Omni:全模态理解、推理及生成新SOTA
人工智能·openai
w***Q35013 小时前
人工智能在智能家居中的控制
人工智能·智能家居
青瓷程序设计13 小时前
花朵识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
阿里云大数据AI技术13 小时前
PAI Physical AI Notebook详解4:基于仿真的GR00T-N1.5模型微调
人工智能
老友@14 小时前
深入 Spring AI:架构与应用
人工智能·spring·ai·架构
SoleMotive.14 小时前
redis实现漏桶算法--https://blog.csdn.net/m0_74908430/article/details/155076710
redis·算法·junit
caiyueloveclamp14 小时前
ChatPPT:AI PPT生成领域的“六边形战士“
人工智能·powerpoint·ai生成ppt·aippt·免费aippt
-森屿安年-14 小时前
LeetCode 283. 移动零
开发语言·c++·算法·leetcode