OpenCV(二十):图像卷积

1.图像卷积原理

图像卷积是一种在图像上应用卷积核的操作。卷积核是一个小的窗口矩阵,它通过在图像上滑动并与图像的像素进行逐元素相乘,然后求和来计算新图像中每个像素的值。通过滑动卷积核并在图像上进行逐像素运算,可以实现一系列图像处理任务,例如平滑、边缘检测和特征提取等。

卷积操作的原理如下:

  1. 定义一个卷积核(或滤波器),它是一个小的窗口矩阵。卷积核的大小通常是奇数,以便有一个中心点。

  2. 将卷积核放置在图像的初始位置上(通常是图像的左上角)。

  3. 将卷积核的每个元素与图像上重叠区域的对应像素进行逐元素相乘。

  4. 将所有乘积结果相加得到新图像中对应像素位置的值。

  5. 将卷积核在图像上滑动一个像素,并重复步骤3和4,直到覆盖整个图像。

  6. 重复以上步骤,将卷积核应用于图像的每个像素位置,生成最终的卷积结果图像。

2.图像卷积函数filter2D()

void filter2D( InputArray src, OutputArray dst, int ddepth,

InputArray kernel, Point anchor = Point(-1,-1),

double delta = 0, int borderType = BORDER_DEFAULT );

参数解释:

  • src:原始图像,可以是单通道(灰度图像)或者是三通道彩色图像。

  • ddepth:输出图像的深度,通常设置为-1以保持与原始图像相同的深度。

  • kernel:应用于图像的卷积核,是一个NumPy数组。

  • dst(可选):输出图像,与原始图像具有相同的大小和深度。如果未提供,则函数会自动创建一个新的图像。

  • anchor(可选):指定卷积核的锚点位置,如果未提供,则默认为(-1, -1),表示锚点位于卷积核的中心。

  • delta(可选):可选的增量参数,用于对输出图像进行偏移。

  • borderType(可选):图像边界的处理方式,可以是cv2.BORDER_CONSTANT、cv2.BORDER_REPLICATE等。

3.示例代码:

复制代码
//图像卷积
void Image_convolution(Mat image){
// 定义卷积核
    cv::Mat kernel = (cv::Mat_<float>(3, 3) <<
                                            0, -1, 0,
                                            -1, 5, -1,
                                              0, -1, 0);

    // 进行卷积操作
    cv::Mat convolvedImage;
    cv::filter2D(image, convolvedImage, -1, kernel);

    // 显示原始图像和卷积结果
    imwrite("/sdcard/DCIM/image.png",image);//原图像
    imwrite("/sdcard/DCIM/convolvedImage.png",convolvedImage);//卷积结果
}
相关推荐
Ro小陌8 分钟前
VisionPro自动化视觉开发实战:脚本编写、规范管理与高级调试
人工智能·microsoft·自动化
水花花花花花30 分钟前
离散文本表示
人工智能·机器人
Thanks_ks34 分钟前
Manus AI 突破多语言手写识别技术壁垒:创新架构、算法与应用解析
人工智能·迁移学习·应用场景·技术突破·多语言手写识别·manus ai·动态书写模型
whaosoft-14335 分钟前
w~自动驾驶合集1
人工智能
白熊18835 分钟前
【通用智能体】Lynx :一款基于终端的纯文本网页浏览器
前端·人工智能·chrome·通用智能体
计算机毕设源码分享88888840 分钟前
番茄采摘机器人的视觉系统设计
人工智能·算法·机器人
RUZHUA44 分钟前
宇树科技申请 “机器人牌照” 商标,剑指机器人领域新高度
人工智能·科技·机器人
DARLING Zero two♡1 小时前
C++寻位映射的奇幻密码:哈希
c++·哈希算法
Linging_241 小时前
Spring AI Alibaba集成阿里云百炼大模型应用
人工智能·spring·阿里云
灏瀚星空1 小时前
【深度学习基础】主流激活函数的核心原理、应用技巧与选择策略
人工智能·深度学习·机器学习