学习pytorch9 神经网络-卷积层

神经网络-卷积层

官网

https://pytorch.org/docs/stable/nn.html#convolution-layers

图像识别常用conv2d 二维卷积 nn.Conv2d
https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html#torch.nn.Conv2d

卷积数据公式


参数说明

Parameters:

  • in_channels (int) -- Number of channels in the input image 输入通道

  • out_channels (int) -- Number of channels produced by the convolution 输出通道

  • kernel_size (int or tuple) -- Size of the convolving kernel 卷积核大小

  • stride (int or tuple, optional) -- Stride of the convolution. Default: 1 每次卷积走多少步,横向纵向的步径大小

  • padding (int, tuple or str, optional) -- Padding added to all four sides of the input. Default: 0 是否在卷积过程中对输入图像的边缘进行填充

  • padding_mode (str, optional) -- 'zeros', 'reflect', 'replicate' or 'circular'. Default: 'zeros' 填充数据的模式是什么,默认为zeros,填充的都是0

  • dilation (int or tuple, optional) -- Spacing between kernel elements. Default: 1 卷积核中间的距离? 一般不改 不常用

  • groups (int, optional) -- Number of blocked connections from input channels to output channels. Default: 1 一般不改 不常用

  • bias (bool, optional) -- If True, adds a learnable bias to the output. Default: True 添加偏置值,默认为True添加偏置值

卷积运算演示

https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md

绿色方格:表示输出图像

蓝色方格:表示输入图像

蓝色方格中的深色阴影部分:表示kernel 卷积核

白色虚线:表示padding填充

动画中深色阴影上下左右整体移动的方格数,表示stride的大小

输入输出channel

两个卷积核做两次卷积,叠加输出一起是out_channel=2

代码

注意点:

  1. super()括号里面没有内容,自动填充的self应该去掉
py 复制代码
super().__init__() 

code

py 复制代码
import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

test_set = torchvision.datasets.CIFAR10(root='./dataset', train=False, transform=torchvision.transforms.ToTensor(), download=True)

dataloader = DataLoader(test_set, batch_size=64, shuffle=False)

class NnConv2d(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=6, kernel_size=3, stride=1, padding=0)

    def forward(self, x):
        x = self.conv1(x)
        return x

nnconvd = NnConv2d()
writer = SummaryWriter('./logs')
step = 0
for data in dataloader:
    imgs, targets = data
    output = nnconvd(imgs)
    print(imgs.shape)
    print(output.shape)
    writer.add_images("input", imgs)
    output = output.reshape([-1, 3, 30, 30])
    writer.add_images("output", output)
    step += 1

执行结果

sh 复制代码
......
torch.Size([64, 6, 30, 30])
torch.Size([64, 3, 32, 32])
torch.Size([64, 6, 30, 30])
torch.Size([64, 3, 32, 32])
torch.Size([64, 6, 30, 30])
torch.Size([64, 3, 32, 32])
torch.Size([64, 6, 30, 30])
torch.Size([64, 3, 32, 32])
torch.Size([64, 6, 30, 30])
torch.Size([64, 3, 32, 32])
torch.Size([64, 6, 30, 30])
torch.Size([16, 3, 32, 32])
torch.Size([16, 6, 30, 30])  # 最后一个batch16是因为drop_last默认为False,最后没除尽的也要保留,参与训练
相关推荐
华新嘉华DTC创新营销34 分钟前
华新嘉华:AI搜索优化重塑本地生活行业:智能推荐正取代“关键词匹配”
人工智能·百度·生活
SmartBrain2 小时前
DeerFlow 实践:华为IPD流程的评审智能体设计
人工智能·语言模型·架构
l1t3 小时前
利用DeepSeek实现服务器客户端模式的DuckDB原型
服务器·c语言·数据库·人工智能·postgresql·协议·duckdb
寒月霜华4 小时前
机器学习-数据标注
人工智能·机器学习
九章云极AladdinEdu5 小时前
超参数自动化调优指南:Optuna vs. Ray Tune 对比评测
运维·人工智能·深度学习·ai·自动化·gpu算力
人工智能训练师6 小时前
Ubuntu22.04如何安装新版本的Node.js和npm
linux·运维·前端·人工智能·ubuntu·npm·node.js
酷飞飞6 小时前
Python网络与多任务编程:TCP/UDP实战指南
网络·python·tcp/ip
cxr8287 小时前
SPARC方法论在Claude Code基于规则驱动开发中的应用
人工智能·驱动开发·claude·智能体
研梦非凡7 小时前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d
数字化顾问7 小时前
Python:OpenCV 教程——从传统视觉到深度学习:YOLOv8 与 OpenCV DNN 模块协同实现工业缺陷检测
python