CNN(七):ResNeXt-50算法的思考

在进行ResNeXt-50实战练习时,我也跟其他学员一样有这个疑惑,如下图所示:

反复查看代码,仍然有些疑惑,甚至怀疑是不是代码错了。实践是检验真理的唯一标准,先把代码跑起来再说。发现运行完全没有问题,再通过对比查看网络结构和代码后,搞清楚了原因,根本原因就在stack的设计,即一个conv_shortcut=True的block+n个conv_shortcut=False的堆叠残差单元,如下图所示:

下面以filters=128,blocks=2的入参来说明原因。

(1)1个block(conv_shortcut=True):conv_shortcut=True,结合代码可知,在进行Add操作时,是将进行了Conv+BN操作的特征图(filters=2*128),与后续[(Conv+BN+ReLU)+ 分组卷积 + (Conv+BN) ]的一系列操作后得出的特征图(filters=2*128)进行Add操作,此时Add的两部分的通道数均是2*128,即256,之后再进行ReLU操作;

(2)2个block(conv_shortcut=False):conv_shortcut=False,结合代码可知,在进行Add操作时,是直接对输入的x与后续的[(Conv+BN+ReLU)+ 分组卷积 + (Conv+BN) ]的一系列操作后得出的特征图(filters=2*128)进行Add操作。这里为什么add的其中一部分是输入x,是因为此时的输入x,是已经通过上面的1个block操作了,此时x的通道数原本就是2*128,即256。因此在进行Add操作时,与后续得出的特征图(filters=2*128)在通道数上完美匹配。

其他filters=256、512、1024则是类似的操作。

相关推荐
hudawei99617 分钟前
机器学习,深度学习,神经网络,Transformer的关系
深度学习·神经网络·机器学习
励志成为美貌才华为一体的女子22 分钟前
每日学习内容简单汇总记录
人工智能
编程小白_正在努力中34 分钟前
大语言模型后训练:解锁潜能的关键路径
人工智能·大语言模型
37手游后端团队34 分钟前
揭秘ChatGPT“打字机”效果:深入理解SSE流式传输技术
人工智能·后端
一车小面包34 分钟前
使用bert-base-chinese中文预训练模型,使用 lansinuote/ChnSentiCorp 中文网购评价数据集进行情感分类微调和训练。
人工智能·深度学习
七夜zippoe1 小时前
大显存 AI 训练实战:PyTorch/TensorFlow 参数调试与多场景落地指南
人工智能·pytorch·深度学习
赋范大模型技术圈1 小时前
OpenAI Agent Kit 全网首发深度解读与上手指南
人工智能·openai
koo3641 小时前
李宏毅机器学习笔记24
人工智能·笔记·机器学习
努力犯错1 小时前
AI视频修复技术入门:从Sora水印谈起,我们如何“抹去”未来影像的瑕疵?
大数据·人工智能·语言模型·开源·音视频
LiJieNiub1 小时前
基于 PyTorch 的图像分类模型集成实践
人工智能·pytorch·分类