CNN(七):ResNeXt-50算法的思考

在进行ResNeXt-50实战练习时,我也跟其他学员一样有这个疑惑,如下图所示:

反复查看代码,仍然有些疑惑,甚至怀疑是不是代码错了。实践是检验真理的唯一标准,先把代码跑起来再说。发现运行完全没有问题,再通过对比查看网络结构和代码后,搞清楚了原因,根本原因就在stack的设计,即一个conv_shortcut=True的block+n个conv_shortcut=False的堆叠残差单元,如下图所示:

下面以filters=128,blocks=2的入参来说明原因。

(1)1个block(conv_shortcut=True):conv_shortcut=True,结合代码可知,在进行Add操作时,是将进行了Conv+BN操作的特征图(filters=2*128),与后续[(Conv+BN+ReLU)+ 分组卷积 + (Conv+BN) ]的一系列操作后得出的特征图(filters=2*128)进行Add操作,此时Add的两部分的通道数均是2*128,即256,之后再进行ReLU操作;

(2)2个block(conv_shortcut=False):conv_shortcut=False,结合代码可知,在进行Add操作时,是直接对输入的x与后续的[(Conv+BN+ReLU)+ 分组卷积 + (Conv+BN) ]的一系列操作后得出的特征图(filters=2*128)进行Add操作。这里为什么add的其中一部分是输入x,是因为此时的输入x,是已经通过上面的1个block操作了,此时x的通道数原本就是2*128,即256。因此在进行Add操作时,与后续得出的特征图(filters=2*128)在通道数上完美匹配。

其他filters=256、512、1024则是类似的操作。

相关推荐
新智元1 分钟前
毛骨悚然!o3 精准破译照片位置,只靠几行 Python 代码?人类在 AI 面前已裸奔
人工智能·openai
Tech Synapse29 分钟前
电商商品推荐系统实战:基于TensorFlow Recommenders构建智能推荐引擎
人工智能·python·tensorflow
帅帅的Python29 分钟前
2015-2023 各省 GDP 数据,用QuickBI 进行数据可视化——堆叠图!
大数据·人工智能
weixin_4307509338 分钟前
智能小助手部署 Win10 + ollama的Deepseek + CentOS+ maxKB
linux·人工智能·机器学习·语言模型·自然语言处理·centos
Panesle43 分钟前
大模型微调与蒸馏的差异性与相似性分析
人工智能·微调·蒸馏
多巴胺与内啡肽.43 分钟前
深度学习--循环神经网络RNN
人工智能·rnn·深度学习
子燕若水1 小时前
解释PyTorch中的广播机制
人工智能·pytorch·python
计算机真好丸1 小时前
第R4周:LSTM-火灾温度预测
人工智能·rnn·lstm
数据与人工智能律师1 小时前
正确应对监管部门的数据安全审查
大数据·网络·数据库·人工智能·区块链
偶尔微微一笑1 小时前
sgpt在kali应用
linux·人工智能·python·自然语言处理