QT连接OpenCV库实现人脸识别

一、关于图像处理的相关类和函数

**图像容器:**Mat类

读取图像:

cpp 复制代码
Mat imread( const String& filename, int flags = IMREAD_COLOR );
功能:读取出图像
参数:图像路径
返回值:读取的图像

命名展示图像的窗口:

cpp 复制代码
void namedWindow(const String& winname, int flags = WINDOW_AUTOSIZE);
功能:命名一个图像窗口
参数1:窗口名称
参数2:窗体尺寸,默认为自适应大小
返回值:无

展示图像:

cpp 复制代码
void imshow(const String& winname, const ogl::Texture2D& tex);
功能:展示图像
参数1:要展示图像的窗口名称
参数2:要展示的二维图像
返回值:无

示例:

cpp 复制代码
#include "widget.h"
#include <QApplication>
int main(int argc, char *argv[])
{
    QApplication a(argc, argv);
    Widget w;
    w.show();

    //1、定义一个图像容器
    Mat src;

    //2、将图像加载进来
    //函数原型:Mat imread( const String& filename, int flags = IMREAD_COLOR );
    //参数:图像的路径
    //返回值:图像容器
    src = imread("D:/opencv/resource/age.jpg");

    //4、命名一个展示图像的窗口
    //namedWindow("Test");

    //5、展示图像
    //函数原型:void imshow(const String& winname, const ogl::Texture2D& tex);
    //参数1:要展示图像的窗口名称
    //参数2:要展示的图像
    //返回值:无
    imshow("Test", src);
    return a.exec();
}

二、视频流相关类和函数

**视频流类:**VideoCapture

打开视频:

cpp 复制代码
virtual bool open(const String& filename);
参数:要打开视频的路径
返回值:成功返回true失败返回false

若想要打开摄像头只需在构造时,调用构造函数参数传递0即可

读取视频流中图像:

cpp 复制代码
virtual bool read(OutputArray image);
功能:读取视频流中的图像
参数:图像容器
返回值:成功读取返回true,失败或者视频结束返回false

图像翻转:

cpp 复制代码
void flip(InputArray src, OutputArray dst, int flipCode);
将图像进行旋转
参数1:要处理的图像
参数2:处理后的图像容器
参数3:处理规则:0:表示沿x翻转,1表示沿y轴翻转,-1表示沿xy轴翻转

休眠阻塞函数:

cpp 复制代码
int waitKey(int delay = 0);
功能:阻塞等待用户输入数据,如果delay=0,则一直等待
参数:毫秒数
返回值:在等待过程中用户按下键的值

示例:

cpp 复制代码
#include "widget.h"
#include <QApplication>
int main(int argc, char *argv[])
{
    QApplication a(argc, argv);
    Widget w;
    w.show();

    //1、定义视频流对象
    VideoCapture v(0);             //表明使用摄像头构造一个视频流对象

    //2、读取摄像头中的图像
    Mat src;                   //用于存放读取出来的图像

    //函数原型:virtual bool read(OutputArray image);
    //功能:从视频流中读取一张图像放入参数中
    //参数:图像容器
    //返回值:成功返回真,失败或者读取视频结束返回假
    while(v.read(src))
    {
        //将图像进行翻转
        //函数原型:void flip(InputArray src, OutputArray dst, int flipCode);
        //参数1:要翻转的图像
        //参数2:翻转后的图像容器
        //参数3:翻转规则:正数表示按y轴翻转,0表示按x轴翻转,负数表示按xy轴翻转
        flip(src, src, 1);

        //展示图像
        imshow("Test1", src);

        //加延时函数
        //函数原型:int waitKey(int delay = 0);
        //参数:等待时间
        //返回值:在等待期间用户按下的键盘的ascii值    ESC键对应的值为27
        if(waitKey(20)==27)
        {
            break;
        }
    }
    return a.exec();
}

三、图像处理

灰度处理:

cpp 复制代码
void cvtColor( InputArray src, OutputArray dst, int code, int dstCn = 0 );
功能:转换图像色彩空间
参数1:要转换的图像
参数2:转变后图像容器
参数3:转换规则:BGR to gray
返回值:无

均衡化处理:

cpp 复制代码
void equalizeHist( InputArray src, OutputArray dst ); 
参数1:输入的灰度图像,必须是8-bit的单通道图像  
参数2:输出的图像 
图像直方图:对整个图像在灰度范围内的像素值(0-255)统计出现的频率,据此生成直方图,直方图反应了图像的灰度分布情况。

示例:

cpp 复制代码
#include "widget.h"
#include <QApplication>
int main(int argc, char *argv[])
{
    QApplication a(argc, argv);
    Widget w;
    w.show();

    //1、定义视频流对象
    VideoCapture v(0);             //表明使用摄像头构造一个视频流对象

    //2、读取摄像头中的图像
    Mat src;                   //用于存放读取出来的图像
    Mat gray;                   //用于存储灰度图的图像容器
    Mat dst;                     //用于存储均衡化处理后的图像容器

    //函数原型:virtual bool read(OutputArray image);
    //功能:从视频流中读取一张图像放入参数中
    //参数:图像容器
    //返回值:成功返回真,失败或者读取视频结束返回假
    while(v.read(src))
    {
        //将图像进行翻转
        //函数原型:void flip(InputArray src, OutputArray dst, int flipCode);
        //参数1:要翻转的图像
        //参数2:翻转后的图像容器
        //参数3:翻转规则:正数表示按y轴翻转,0表示按x轴翻转,负数表示按xy轴翻转
        flip(src, src, 1);

        //3、将图像灰度处理
        //函数原型:void cvtColor( InputArray src, OutputArray dst, int code, int dstCn = 0 );
        //参数1:要转换的图像
        //参数2:转换后的图像容器
        //参数3:转换规则  CV_BGR2GRAY表示将bgr彩色图转换为gray灰度图
        //返回值:无
        cvtColor(src, gray, CV_BGR2GRAY);

        //4、对图像进行均衡化处理
        //函数原型:void equalizeHist( InputArray src, OutputArray dst );
        //参数1:要进行均衡化处理的图像,必须是单通道灰度图
        //参数2:均衡化处理后的图像容器
        //返回值:无
        equalizeHist(gray, dst);

        //展示彩色图像
        imshow("Test1", src);

        //展示灰度图像
        imshow("Test2", gray);

        //展示均衡化处理后的图像
        imshow("Test3", dst);

        //加延时函数
        //函数原型:int waitKey(int delay = 0);
        //参数:等待时间
        //返回值:在等待期间用户按下的键盘的ascii值    ESC键对应的值为27
        if(waitKey(20)==27)
        {
            break;
        }
    }
    return a.exec();
}

四、级联分类器

**opencv级联分类器工具类 :**CascadeClassifier

加载级联分类器配置文件 :

cpp 复制代码
bool load( const String& filename ) 
参数1:分类器数据文件的名字
返回值:成功true,失败false

找到人脸所在位置的矩形区域:

cpp 复制代码
void detectMultiScale(
const Mat& image, 
CV_OUT vector& objects,
double scaleFactor = 1.1,
int minNeighbors = 3, 
int flags = 0, 
Size ize = Size(24,24))
参数1:待检测灰度图像(数据少处理起来简单) 
参数2:被检测物体的矩形框向量( 人脸Rect矩形区域,其中objects.size()是人脸个数 ) 
参数3:前后两次相继的扫描中搜索窗口的比例系数,默认为1.1 即每次搜索窗口扩大10% 
参数4:构成检测目标的相邻矩形的最小个数 如果组成检测目标的小矩形的个数和小于 minneighbors - 1 都会被除 
参数5:若设置为CV_HAAR_DO_CANNY_PRUNING 函数将会使用Canny边缘检测来排除边缘过多 或过少的区域,,一般采用默认值0 
参数6:用来限制得到的目标区域的范围,一般检测人脸使用Size(24, 24)

显示矩形区域:

cpp 复制代码
void rectangle(
CV_IN_OUT Mat& img, 
Rect rec,
const Scalar& color, 
int thickness = 1,
int lineType = LINE_8, 
int shift = 0);

img:图像。 
rec:表征矩形的位置和长宽。 
color:线条颜色 (RGB) 。 
thickness:组成矩形的线条的粗细程度。 
line_type:线条的类型。 
shift:坐标点的小数点位数,0表示没有小数点。

示例:

cpp 复制代码
#include "widget.h"
#include <QApplication>
int main(int argc, char *argv[])
{
    QApplication a(argc, argv);
    Widget w;
    w.show();

    //1、定义视频流对象
    VideoCapture v(0);             //表明使用摄像头构造一个视频流对象

    //2、读取摄像头中的图像
    Mat src;                   //用于存放读取出来的图像
    Mat gray;                   //用于存储灰度图的图像容器
    Mat dst;                     //用于存储均衡化处理后的图像容器

    //5、实例化一个级联分类器的对象,用于找到图像中的人脸矩形区域
    CascadeClassifier c;
    //给类对象装载人脸识别模型
    //函数原型:bool load( const String& filename );
    //功能:给级联分类器对象,下载一个识别模型
    //参数:人脸识别模型的文件路径
    //返回值:成功下载返回真,失败返回假
    if(!c.load("D:/opencv/resource/haarcascade_frontalface_alt2.xml"))
    {
        QMessageBox::information(NULL,"失败", "人脸识别模型装载失败");
        return -1;
    }

    //定义容器存放人脸分类后的矩形框
    vector<Rect> faces;

    //函数原型:virtual bool read(OutputArray image);
    //功能:从视频流中读取一张图像放入参数中
    //参数:图像容器
    //返回值:成功返回真,失败或者读取视频结束返回假
    while(v.read(src))
    {
        //将图像进行翻转
        //函数原型:void flip(InputArray src, OutputArray dst, int flipCode);
        //参数1:要翻转的图像
        //参数2:翻转后的图像容器
        //参数3:翻转规则:正数表示按y轴翻转,0表示按x轴翻转,负数表示按xy轴翻转
        flip(src, src, 1);


        //3、将图像灰度处理
        //函数原型:void cvtColor( InputArray src, OutputArray dst, int code, int dstCn = 0 );
        //参数1:要转换的图像
        //参数2:转换后的图像容器
        //参数3:转换规则  CV_BGR2GRAY表示将bgr彩色图转换为gray灰度图
        //返回值:无
        cvtColor(src, gray, CV_BGR2GRAY);


        //4、对图像进行均衡化处理
        //函数原型:void equalizeHist( InputArray src, OutputArray dst );
        //参数1:要进行均衡化处理的图像,必须是单通道灰度图
        //参数2:均衡化处理后的图像容器
        //返回值:无
        equalizeHist(gray, dst);


        //6、使用级联分类器对象,获取人脸矩形区域
        //函数原型:void detectMultiScale( InputArray image,CV_OUT std::vector<Rect>& objects)
        //参数1:要进行识别的图像
        //参数2:对该图像识别后,的矩形框存放的数组容器
        c.detectMultiScale(dst, faces);


        //7、将上述得到的矩形框,全部都绘制到图像上
        for(int i=0; i<faces.size(); i++)
        {
            //将任意一个矩形框,全部都绘制到图像上
            //函数原型:void rectangle(CV_IN_OUT Mat& img, Rect rec,const Scalar& color, int thickness = 1)
            //参数1:要被绘制的图像
            //参数2:要绘制的矩形框
            //参数3:矩形框的颜色
            //参数4:矩形框的粗细
            //返回值:无
            rectangle(src, faces[i], Scalar(0,0,255), 2);
        }


        //8、像素反差
        for(int i=0; i<src.rows; i++)        //外层循环控制行数
        {
            for(int j=0; j<src.cols; j++)        //内层循环控制列数
            {
                //找到任意一个像素:src.at<Vec3b>(i,j)
                //找到任意一个像素中的通道中的值src.at<Vec3b>(i,j)[k]
                for(int k=0; k<3; k++)
                {
                    src.at<Vec3b>(i,j)[k] = 255 - src.at<Vec3b>(i,j)[k];  //对像素进行反差
                }


            }
        }

        //展示彩色图像
        imshow("Test1", src);

        //展示灰度图像
        imshow("Test2", gray);

        //展示均衡化处理后的图像
        imshow("Test3", dst);


        //加延时函数
        //函数原型:int waitKey(int delay = 0);
        //参数:等待时间
        //返回值:在等待期间用户按下的键盘的ascii值    ESC键对应的值为27
        if(waitKey(20)==27)
        {
            break;
        }
    }

    return a.exec();
}
相关推荐
Topstip5 分钟前
Gemini 对话机器人加入开源盲水印技术来检测 AI 生成的内容
人工智能·ai·机器人
Bearnaise7 分钟前
PointMamba: A Simple State Space Model for Point Cloud Analysis——点云论文阅读(10)
论文阅读·笔记·python·深度学习·机器学习·计算机视觉·3d
小嗷犬20 分钟前
【论文笔记】VCoder: Versatile Vision Encoders for Multimodal Large Language Models
论文阅读·人工智能·语言模型·大模型·多模态
Struart_R25 分钟前
LVSM: A LARGE VIEW SYNTHESIS MODEL WITH MINIMAL 3D INDUCTIVE BIAS 论文解读
人工智能·3d·transformer·三维重建
lucy1530275107926 分钟前
【青牛科技】GC5931:工业风扇驱动芯片的卓越替代者
人工智能·科技·单片机·嵌入式硬件·算法·机器学习
jndingxin1 小时前
OpenCV相机标定与3D重建(1)概述
数码相机·opencv·3d
幻风_huanfeng1 小时前
线性代数中的核心数学知识
人工智能·机器学习
volcanical1 小时前
LangGPT结构化提示词编写实践
人工智能
weyson2 小时前
CSharp OpenAI
人工智能·语言模型·chatgpt·openai
RestCloud2 小时前
ETLCloud异常问题分析ai功能
人工智能·ai·数据分析·etl·数据集成工具·数据异常